Logotipo do repositório
 

Publicação:
Transition form factors: γ∗+p → Δ (1232), Δ (1600)

dc.contributor.authorLu, Y.
dc.contributor.authorChen, C. [UNESP]
dc.contributor.authorCui, Z. F.
dc.contributor.authorRoberts, C. D.
dc.contributor.authorSchmidt, S. M.
dc.contributor.authorSegovia, J.
dc.contributor.authorZong, H. S.
dc.contributor.institutionNanjing University
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionArgonne National Laboratory
dc.contributor.institutionJARA
dc.contributor.institutionUniversidad Pablo de Olavide
dc.contributor.institutionNuclear Physics and Cosmology
dc.contributor.institutionJustus-Liebig-Universität Gießen
dc.date.accessioned2022-04-29T08:28:22Z
dc.date.available2022-04-29T08:28:22Z
dc.date.issued2019-08-05
dc.description.abstractElectroproduction form factors describing the γ∗p→Δ+(1232), Δ+(1600) transitions are computed using a fully dynamical diquark-quark approximation to the Poincaré-covariant three-body bound-state problem in relativistic quantum field theory. In this approach, the Δ(1600) is an analogue of the Roper resonance in the nucleon sector, appearing as the simplest radial excitation of the Δ(1232). Precise measurements of the γ∗p→Δ+(1232) transition already exist on 0≤Q2≲8 GeV2, and the calculated results compare favorably with the data outside the meson-cloud domain. The predictions for the γ∗p→Δ+(1600) magnetic dipole and electric quadrupole transition form factors are consistent with the empirical values at the real photon point, and extend to Q2≈6mp2, enabling a meaningful direct comparison with experiment once analysis of existing data is completed. In both cases, the electric quadrupole form factor is particularly sensitive to deformation of the Δ-baryons. Interestingly, while the γ∗p→Δ+(1232) transition form factors are larger in magnitude than those for γ∗p→Δ+(1600) in some neighborhood of the real photon point, this ordering is reversed on Q2≳2mp2, suggesting that the γ∗p→Δ+(1600) transition is more localized in configuration space.en
dc.description.affiliationDepartment of Physics Nanjing University
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271
dc.description.affiliationPhysics Division Argonne National Laboratory
dc.description.affiliationInstitute for Advanced Simulation Forschungszentrum Jülich JARA
dc.description.affiliationDepartamento de Sistemas Físicos Químicos y Naturales Universidad Pablo de Olavide
dc.description.affiliationJoint Center for Particle Nuclear Physics and Cosmology
dc.description.affiliationInstitut für Theoretische Physik Justus-Liebig-Universität Gießen
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista, Rua Dr. Bento Teobaldo Ferraz, 271
dc.identifierhttp://dx.doi.org/10.1103/PhysRevD.100.034001
dc.identifier.citationPhysical Review D, v. 100, n. 3, 2019.
dc.identifier.doi10.1103/PhysRevD.100.034001
dc.identifier.issn2470-0029
dc.identifier.issn2470-0010
dc.identifier.scopus2-s2.0-85072063384
dc.identifier.urihttp://hdl.handle.net/11449/228716
dc.language.isoeng
dc.relation.ispartofPhysical Review D
dc.sourceScopus
dc.titleTransition form factors: γ∗+p → Δ (1232), Δ (1600)en
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos