Logotipo do repositório
 

Publicação:
NEURO-FUZZY MODELING: A PROMISING ALTERNATIVE FOR RISK ANALYSIS IN URBAN AFFORESTATION MANAGEMENT

dc.contributor.authorBressane, Adriano [UNESP]
dc.contributor.authorBagatini, Joao Augusto
dc.contributor.authorBiagolini, Carlos Humberto [UNESP]
dc.contributor.authorFrutuoso Roveda, Jose Arnaldo [UNESP]
dc.contributor.authorMonteiro Masalskiene Roveda, Sandra Regina [UNESP]
dc.contributor.authorFengler, Felipe Hashimoto [UNESP]
dc.contributor.authorLongo, Regina Marcia
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionPrefeitura Municipal Nova Prata
dc.contributor.institutionUniv Catolica Campinas
dc.date.accessioned2018-11-26T17:54:54Z
dc.date.available2018-11-26T17:54:54Z
dc.date.issued2018-01-01
dc.description.abstractUrban afforestation has important functions, but problems related to its management are equally relevant, analysis of which is needed in order to prevent accidents. However, due to the subjectivity in the assessment, there may be uncertainty as to the seriousness of the risk. In order to address this, the present work evaluates a neuro-fuzzy-based methodology for the integrated analysis of risk indicators. From the knowledge of experts and a database with 107 cases, systems were constructed for the multi-criteria analysis of 18 parameters integrated using 3 indexes and 5 indicators. As a result, the model presented accuracies of 95.5% in generalization tests, and almost perfect agreement (kappa > 0.8) with the assessment by the expert. In conclusion, the findings show that this neuro-fuzzy modeling approach represents a promising alternative for supporting risk analysis in urban afforestation.en
dc.description.affiliationUniv Estadual Paulista, Dept Engn Ambiental, Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationPrefeitura Municipal Nova Prata, Nova Prata, RS, Brazil
dc.description.affiliationUniv Estadual Paulista, Campus Sorocaba, Sorocaba, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Dept Engn Ambiental, Sorocaba, SP, Brazil
dc.description.affiliationUniv Catolica Campinas, Fac Engn Ambiental, Campinas, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Engn Ambiental, Sao Jose Dos Campos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Campus Sorocaba, Sorocaba, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Dept Engn Ambiental, Sorocaba, SP, Brazil
dc.format.extent10
dc.identifierhttp://dx.doi.org/10.1590/1806-90882018000100006
dc.identifier.citationRevista Arvore. Vicosa: Univ Federal Vicosa, v. 42, n. 1, 10 p., 2018.
dc.identifier.doi10.1590/1806-90882018000100006
dc.identifier.fileS0100-67622018000100205.pdf
dc.identifier.issn0100-6762
dc.identifier.lattes8959637559404206
dc.identifier.orcid0000-0002-4899-3983
dc.identifier.scieloS0100-67622018000100205
dc.identifier.urihttp://hdl.handle.net/11449/164523
dc.identifier.wosWOS:000441757200002
dc.language.isoeng
dc.publisherUniv Federal Vicosa
dc.relation.ispartofRevista Arvore
dc.relation.ispartofsjr0,458
dc.rights.accessRightsAcesso aberto
dc.sourceWeb of Science
dc.subjectRisk indicators
dc.subjectIntegrated analysis
dc.subjectUncertainties
dc.titleNEURO-FUZZY MODELING: A PROMISING ALTERNATIVE FOR RISK ANALYSIS IN URBAN AFFORESTATION MANAGEMENTen
dc.typeArtigo
dcterms.rightsHolderUniv Federal Vicosa
dspace.entity.typePublication
unesp.author.lattes8959637559404206[1]
unesp.author.orcid0000-0002-4899-3983[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt
unesp.departmentEngenharia Ambiental - ICTSpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S0100-67622018000100205.pdf
Tamanho:
955.1 KB
Formato:
Adobe Portable Document Format