Logotipo do repositório
 

Publicação:
Throughput analysis of cognitive wireless networks with Poisson distributed nodes based on location information

dc.contributor.authorNardelli, Pedro H. J.
dc.contributor.authorLima, Carlos H. M. de [UNESP]
dc.contributor.authorAlves, Hirley
dc.contributor.authorCardieri, Paulo
dc.contributor.authorLatva-aho, Matti
dc.contributor.institutionUniv Oulu
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2018-11-26T15:28:00Z
dc.date.available2018-11-26T15:28:00Z
dc.date.issued2015-10-01
dc.description.abstractThis paper provides a statistical characterization of the individual achievable rates in bits/s/Hz and the spatial throughput of bipolar Poisson wireless networks in bits/s/Hz/m(2). We assume that all cognitive transmitters know the distance to their receiver's closest interferers and use this side-information to autonomously tune their coding rates to avoid outage events for each spatial realization. Considering that the closest interferer approximates the aggregate interference of all transmitters treated as noise, we derive closed-form expressions for the probability density function of the achievable rates under two decoding rules: treating interference as noise, and jointly detecting the strongest interfering signals treating the others as noise. Based on these rules and the bipolar model, we approximate the expected maximum spatial throughput, showing the best performance of the latter decoding rule. These results are also compared to the reference scenario where the transmitters do not have cognitive ability, coding their messages at predetermined rates that are chosen to optimize the expected spatial throughput regardless of particular realizations which yields outages. We prove that, when the same decoding rule and network density are considered, the cognitive spatial throughput always outperforms the other option. (C) 2015 Elsevier B.V. All rights reserved.en
dc.description.affiliationUniv Oulu, CWC, SF-90100 Oulu, Finland
dc.description.affiliationSao Paulo State Univ, So Joao Da Boa Vista, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Wireless Technol Lab WissTek, Campinas, SP, Brazil
dc.description.affiliationUnespSao Paulo State Univ, So Joao Da Boa Vista, SP, Brazil
dc.description.sponsorshipInfotech Graduate School at University of Oulu
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipBrazilian Science without Boarders Special Visiting Researcher fellowship
dc.description.sponsorshipSUSTAIN Finnish Academy
dc.description.sponsorshipIdCNPq: 312146/2012-4
dc.description.sponsorshipIdCNPq: 490235/2012-3
dc.description.sponsorshipIdBrazilian Science without Boarders Special Visiting Researcher fellowship: CAPES 076/2012
dc.description.sponsorshipIdSUSTAIN Finnish Academy: 490235/2012-3
dc.format.extent1-15
dc.identifierhttp://dx.doi.org/10.1016/j.adhoc.2015.04.001
dc.identifier.citationAd Hoc Networks. Amsterdam: Elsevier Science Bv, v. 33, p. 1-15, 2015.
dc.identifier.doi10.1016/j.adhoc.2015.04.001
dc.identifier.fileWOS000362304400001.pdf
dc.identifier.issn1570-8705
dc.identifier.urihttp://hdl.handle.net/11449/158531
dc.identifier.wosWOS:000362304400001
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofAd Hoc Networks
dc.relation.ispartofsjr0,530
dc.rights.accessRightsAcesso abertopt
dc.sourceWeb of Science
dc.subjectCognitive networks
dc.subjectSpatial throughput
dc.subjectStochastic geometry
dc.titleThroughput analysis of cognitive wireless networks with Poisson distributed nodes based on location informationen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.orcid0000-0002-8689-5313[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vistapt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
WOS000362304400001.pdf
Tamanho:
773.07 KB
Formato:
Adobe Portable Document Format
Descrição: