Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

A stochastic mixed-integer conic programming model for distribution system expansion planning considering wind generation

dc.contributor.authorOrtiz, Juan Manuel Home [UNESP]
dc.contributor.authorPourakbari-Kasmaei, Mahdi
dc.contributor.authorLópez, Julio
dc.contributor.authorMantovani, José Roberto Sanches [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionAalto University
dc.contributor.institutionUniversity of Cuenca
dc.date.accessioned2018-12-11T17:37:47Z
dc.date.available2018-12-11T17:37:47Z
dc.date.issued2018-08-01
dc.description.abstractThis paper presents a stochastic scenario-based approach to finding an efficient plan for the electrical power distribution systems. In this paper the stochasticity for the distribution system expansion planning (DSEP) problem refers to the loads and wind speed behavior. The proposed DSEP model consist the expansion and/or construction of new substations, installation of new primary feeders and/or reinforcement the existing, installation of wind-distributed generation based, reconfiguration of existing network, and the proposed DSEP is solved considering uncertainty in electric demand and distributed generation. In this regard, a two-stage stochastic programming model is used, wherein the first stage the investment decision is made and the second stage calculates the expected operating value which depends on the stochastic scenarios. The mathematical approach is based on a mixed integer conic programming (MICP) model. By using this MICP model and a commercial optimization solver, finding the optimal global solution is guaranteed. Moreover, in this paper by using the Tabu Search algorithm and take the advantages of a stochastic conic optimal power flow model, an efficient hybrid algorithm is developed. With the aim of comparing the performance of the optimization techniques based on solution of MICP model directly and using a hybrid proposed methodology, they are tested in a 24-node distribution system and the results are compared in detail.en
dc.description.affiliationElectrical Engineering Department UNESP-São Paulo State University, Av Brasil 056
dc.description.affiliationDepartment of Electrical Engineering Aalto University
dc.description.affiliationSchool of Electrical Engineering (DEET) Faculty of Enegineering University of Cuenca
dc.description.affiliationUnespElectrical Engineering Department UNESP-São Paulo State University, Av Brasil 056
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.format.extent551-571
dc.identifierhttp://dx.doi.org/10.1007/s12667-018-0282-z
dc.identifier.citationEnergy Systems, v. 9, n. 3, p. 551-571, 2018.
dc.identifier.doi10.1007/s12667-018-0282-z
dc.identifier.file2-s2.0-85050309693.pdf
dc.identifier.issn1868-3975
dc.identifier.issn1868-3967
dc.identifier.scopus2-s2.0-85050309693
dc.identifier.urihttp://hdl.handle.net/11449/180045
dc.language.isoeng
dc.relation.ispartofEnergy Systems
dc.relation.ispartofsjr0,496
dc.relation.ispartofsjr0,496
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectConic model
dc.subjectDistributed generation
dc.subjectPower distribution system planning
dc.subjectStochastic programming
dc.subjectTabu search
dc.titleA stochastic mixed-integer conic programming model for distribution system expansion planning considering wind generationen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-0746-8082[1]
unesp.author.orcid0000-0001-5067-1943[3]
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85050309693.pdf
Tamanho:
838.8 KB
Formato:
Adobe Portable Document Format
Descrição: