Logotipo do repositório
 

Publicação:
Sliding vector fields for non-smooth dynamical systems having intersecting switching manifolds

dc.contributor.authorLlibre, Jaume
dc.contributor.authorSilva, Paulo R. da [UNESP]
dc.contributor.authorTeixeira, Marco A.
dc.contributor.institutionUniv Autonoma Barcelona
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.date.accessioned2015-10-21T13:14:33Z
dc.date.available2015-10-21T13:14:33Z
dc.date.issued2015-02-01
dc.description.abstractWe consider a differential equation p over dot = X(p), p is an element of R-3, with discontinuous right-hand side and discontinuities occurring on a set Sigma. We discuss the dynamics of the sliding mode which occurs when, for any initial condition near p is an element of Sigma, the corresponding solution trajectories are attracted to Sigma. Firstly we suppose that Sigma = H-1(0), where H is a smooth function and 0 is an element of R is a regular value. In this case Sigma is locally diffeomorphic to the set F = {(x, y, z) is an element of R-3; z = 0}. Secondly we suppose that Sigma is the inverse image of a non-regular value. We focus our attention to the equations defined around singularities as described in Gutierrez and Sotomayor (1982 Proc. Lond. Math. Soc 45 97-112). More precisely, we restrict the degeneracy of the singularity so as to admit only those which appear when the regularity conditions in the definition of smooth surfaces of R-3 in terms of implicit functions and immersions are broken in a stable manner. In this case Sigma is locally diffeomorphic to one of the following algebraic varieties: D = {(x, y, z) is an element of R-3; xy = 0} (double crossing); T = {(x, y, z) is an element of R-3; xyz = 0} (triple crossing); C = {(x, y, z) is an element of R-3; z(2) -x(2)-y(2) = 0} (cone) or W = {(x, y, z) is an element of R-3; zx(2)-y(2) = 0} (Whitney's umbrella).en
dc.description.affiliationUniv Autonoma Barcelona, Dept Matemat, Bellaterra 08193, Barcelona, Spain
dc.description.affiliationUNESP, IBILCE, Dept Matemat, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, IMECC, BR-13081970 Campinas, SP, Brazil
dc.description.affiliationUnespUNESP, IBILCE, Dept Matemat, BR-15054000 Sao José do Rio Preto, SP, Brazil
dc.description.sponsorshipMICIIN/FEDER grant
dc.description.sponsorshipGeneralitat de Catalunya grant
dc.description.sponsorshipICREA Academia
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdMICIIN/FEDER: MTM2008-03437
dc.description.sponsorshipIdGeneralitat de Catalunya: 2009SGR-410
dc.description.sponsorshipIdFP7-PEOPLE-2012-IRSES: 316338
dc.format.extent493-507
dc.identifierhttp://iopscience.iop.org/article/10.1088/0951-7715/28/2/493/meta;jsessionid=A2FCCC8E3406D079592135B8FAA139C6.c1
dc.identifier.citationNonlinearity, v. 28, n. 2, p. 493-507, 2015.
dc.identifier.doi10.1088/0951-7715/28/2/493
dc.identifier.issn0951-7715
dc.identifier.urihttp://hdl.handle.net/11449/128856
dc.identifier.wosWOS:000348195100008
dc.language.isoeng
dc.publisherIop Publishing Ltd
dc.relation.ispartofNonlinearity
dc.relation.ispartofjcr1.926
dc.relation.ispartofsjr1,587
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectNon-smooth dynamical systemen
dc.subjectSingular perturbationen
dc.subjectSliding vector fielden
dc.titleSliding vector fields for non-smooth dynamical systems having intersecting switching manifoldsen
dc.typeArtigo
dcterms.licensehttp://iopscience.iop.org/page/copyright
dcterms.rightsHolderIop Publishing Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0002-5386-9282[3]
unesp.author.orcid0000-0002-9511-5999[1]
unesp.author.orcid0000-0002-1430-5986[2]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos