Logotipo do repositório
 

Publicação:
A predictive model for boiling heat transfer coefficient of dielectric fluids on metal foams

dc.contributor.authorManetti, Leonardo L. [UNESP]
dc.contributor.authorOliveira Henriques Moita, Ana Sofia
dc.contributor.authorCardoso, Elaine Maria [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade de Lisboa
dc.date.accessioned2021-06-25T10:11:30Z
dc.date.available2021-06-25T10:11:30Z
dc.date.issued2020-01-01
dc.description.abstractPool boiling is a suitable technique for direct immersion cooling in electronic devices coupled with dielectric fluids. However, these fluids have relatively poor thermophysical properties in contrast to water, and extremely small contact angle that causes temperature overshooting at the boiling incipience. So, the use of surface enhancement techniques such as porous surfaces has been widely reported to enhance heat transfer performance and meet the cooling requirements. The porous thickness and pore size are the most important parameters of a porous surface, and their optimal values mainly depend on the fluid properties. This work aims to investigate the performance of metal foams of nickel and copper, with different pore diameter and thicknesses on pool boiling, using HFE-7100 as working fluid. A predictive model was proposed for the heat transfer coefficient (HTC) based on the Buckingham π theorem and experimental database. Additional data were taken from the literature for comparative purposes. The dimensionless numbers showed a greater contribution of the transient heat conduction and single-phase convection than the latent heat. In addition, as the pore diameter decreases the HTC increases. The thickness presents a variable exponent, which is a function of the heat flux, due to the balance of heat transfer area and vapor bubble resistance. The developed model accurately predicts 93% of the experimental data within an error band of ± 30% and absolute mean deviation of 13%; moreover, the developed model predicts 68% (within the ± 30% error band) of data from the literature for different working fluids and foams parameters.en
dc.description.affiliationUNESP – São Paulo State University School of Engineering Post-Graduation Program in Mechanical Engineering, Av. Brasil, 56
dc.description.affiliationUNESP – São Paulo State University Campus of São João da Boa Vista
dc.description.affiliationIN+ Dep. Mechanical Engineering Instituto Superior Técnico Universidade de Lisboa
dc.description.affiliationUnespUNESP – São Paulo State University School of Engineering Post-Graduation Program in Mechanical Engineering, Av. Brasil, 56
dc.description.affiliationUnespUNESP – São Paulo State University Campus of São João da Boa Vista
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação para a Ciência e a Tecnologia
dc.description.sponsorshipIdCNPq: 458702/2014-5
dc.description.sponsorshipIdFundação para a Ciência e a Tecnologia: IF/00810/2015
dc.format.extent25-37
dc.identifierhttp://dx.doi.org/10.1615/TFEC2020.boi.032028
dc.identifier.citationProceedings of the Thermal and Fluids Engineering Summer Conference, v. 2020-April, p. 25-37.
dc.identifier.doi10.1615/TFEC2020.boi.032028
dc.identifier.issn2379-1748
dc.identifier.scopus2-s2.0-85091350282
dc.identifier.urihttp://hdl.handle.net/11449/205201
dc.language.isoeng
dc.relation.ispartofProceedings of the Thermal and Fluids Engineering Summer Conference
dc.sourceScopus
dc.subjectHeat transfer coefficient
dc.subjectHFE-7100
dc.subjectMetal foams
dc.subjectPool boiling
dc.subjectPredictive model
dc.titleA predictive model for boiling heat transfer coefficient of dielectric fluids on metal foamsen
dc.typeTrabalho apresentado em eventopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vistapt
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt

Arquivos