Logo do repositório
 

Prediction of dopant atom distribution on nanocrystals using thermodynamic arguments

dc.contributor.authorStroppa, Daniel G.
dc.contributor.authorMontoro, Luciano A.
dc.contributor.authorCampello, Antonio
dc.contributor.authorGracia, Lourdes [UNESP]
dc.contributor.authorBeltran, Armando
dc.contributor.authorAndres, Juan
dc.contributor.authorLeite, Edson R.
dc.contributor.authorRamirez, Antonio J.
dc.contributor.institutionBrazilian Nanotechnol Natl Lab
dc.contributor.institutionForschungszentrum Julich
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de São Carlos (UFSCar)
dc.date.accessioned2014-12-03T13:08:59Z
dc.date.available2014-12-03T13:08:59Z
dc.date.issued2014-01-01
dc.description.abstractA theoretical approach aiming at the prediction of segregation of dopant atoms on nanocrystalline systems is discussed here. It considers the free energy minimization argument in order to provide the most likely dopant distribution as a function of the total doping level. For this, it requires as input (i) a fixed polyhedral geometry with defined facets, and (ii) a set of functions that describe the surface energy as a function of dopant content for different crystallographic planes. Two Sb-doped SnO2 nanocrystalline systems with different morphology and dopant content were selected as a case study, and the calculation of the dopant distributions expected for them is presented in detail. The obtained results were compared to previously reported characterization of this system by a combination of HRTEM and surface energy calculations, and both methods are shown to be equivalent. Considering its application pre-requisites, the present theoretical approach can provide a first estimation of doping atom distribution for a wide range of nanocrystalline systems. We expect that its use will support the reduction of experimental effort for the characterization of doped nanocrystals, and also provide a solution to the characterization of systems where even state-of-art analytical techniques are limited.en
dc.description.affiliationBrazilian Nanotechnol Natl Lab, BR-13083970 Campinas, SP, Brazil
dc.description.affiliationForschungszentrum Julich, Ernst Ruska Ctr, D-52425 Julich, Germany
dc.description.affiliationUniv Estadual Campinas, Sch Mech Engn, BR-13083860 Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Campinas, Inst Math Stat & Sci Comp, BR-13083860 Campinas, SP, Brazil
dc.description.affiliationUniv Estadual Paulista, Inst Quim, LIEC, BR-14800900 Sao Paulo, Brazil
dc.description.affiliationUniv Fed Sao Carlos, Dept Chem, BR-13560 Sao Carlos, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, Inst Quim, LIEC, BR-14800900 Sao Paulo, Brazil
dc.format.extent1089-1094
dc.identifierhttp://dx.doi.org/10.1039/c3cp53427h
dc.identifier.citationPhysical Chemistry Chemical Physics. Cambridge: Royal Soc Chemistry, v. 16, n. 3, p. 1089-1094, 2014.
dc.identifier.doi10.1039/c3cp53427h
dc.identifier.issn1463-9076
dc.identifier.urihttp://hdl.handle.net/11449/111787
dc.identifier.wosWOS:000328643900032
dc.language.isoeng
dc.publisherRoyal Soc Chemistry
dc.relation.ispartofPhysical Chemistry Chemical Physics
dc.relation.ispartofjcr3.906
dc.relation.ispartofsjr1,686
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.titlePrediction of dopant atom distribution on nanocrystals using thermodynamic argumentsen
dc.typeArtigopt
dcterms.rightsHolderRoyal Soc Chemistry
dspace.entity.typePublication
relation.isOrgUnitOfPublicationbc74a1ce-4c4c-4dad-8378-83962d76c4fd
relation.isOrgUnitOfPublication.latestForDiscoverybc74a1ce-4c4c-4dad-8378-83962d76c4fd
unesp.author.orcid0000-0001-9684-2568[4]
unesp.author.orcid0000-0001-9665-5527[5]
unesp.author.orcid0000-0002-7711-1839[1]
unesp.author.orcid0000-0003-0232-3957[6]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt

Arquivos