Publicação:
Europium-doped Zn-Al-LDH intercalated with 4-biphenylcarboxylate anion and undoped Zn-Al-LDH intercalated with its anionic Eu(III) complex: Structural and UV or X-ray excited luminescence properties

Nenhuma Miniatura disponível

Data

2022-02-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Undoped and doped layered double hydroxides (LDH) were obtained by coprecipitation and the bca (biphenyl-4-carboxylate) anion or [Eu(bca)4]- intercalation by solvothermal post treatment. The three systems, (i) [Zn2Al1-xEux]NO3-LDH x = 0.1 at.%, (ii) [Zn2Al1-xEux]bca-LDH x = 0.1 at.% and (iii) [Zn2Al][Eu(bca)4]-LDH are compared by XRD, FTIR, Zeta Potential, PLS and XEOL characterizations. The luminescent properties are exciting. The bca intercalation/coordination increases the luminescence intensity of the doped LDH because decreases the –OH groups, luminescence suppressors by multi-phonon process, and increases the ligand to Eu3+ energy transfer processes. The luminescence in the (iii) system is less intense than the (ii) system but more intense than (i) system and the Eu3+ symmetry in the intercalated complex is different from the free one. X-ray excited optical luminescence occurs on all systems with different radiation damage. The intense luminescence remarks the Eu3+ as an excellent spectroscopic probe, as dopant in the brucite-like layers and in the interlayer space as anion complex. Finally, the LDH host structure acts as a protective environment for the luminescence properties of intercalated species. Thus, LDH systems become potential candidates combining the inorganic and organic properties for promising emission materials.

Descrição

Idioma

Inglês

Como citar

Optical Materials, v. 124.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação