Logotipo do repositório
 

Publicação:
ZrO2-CNT composite production through reducing atmosphere

dc.contributor.authorNeto, Vicente Gerlin
dc.contributor.authorPereira, Cristian Guilherme Barbosa [UNESP]
dc.contributor.authorFaglioni, Felipe Dias [UNESP]
dc.contributor.authorFortulan, Carlos Alberto
dc.contributor.authorFoschini, Cesar Renato [UNESP]
dc.contributor.institutionScience and Technology of São Paulo – IFSP
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2023-07-29T14:03:57Z
dc.date.available2023-07-29T14:03:57Z
dc.date.issued2022-10-01
dc.description.abstractZirconia (ZrO2) is a well-known and widely used ceramic in engineering applications and is even termed as ‘ceramic steel’ in its tetragonal stabilised phase (TZP). However, even the tetragonal zirconia has some issues with low fracture toughness and attempts to enhance its toughness have been researched thoroughly. A recent and promising toughening method is the addition of other components to the TZP ceramic matrix. Different additives are used with nanocomponents as a major means of zirconia toughening, using advanced sintering and processing techniques such as flash sintering and spark plasma sintering. This work aims to produce a composite with zirconia matrix adding nanocomponents (carbon nanotubes) to modify and analyse the composite properties, using common methods of processing and sintering. With said common methods (furnace sintering and hydrothermal mixing), we produced ZrO2-CNT composites with 1.0 and 2.0% in weight of CNTs and analysed the nanotubes’ presence and their influence on the composite properties after sintering. The composite showed good results, with CNTs’ integrity achieved in the composites, as observed by scanning electron microscopy. Composite density was as high as 96% with 1.0 wt% of CNTs and, for mechanical properties, hardness suffered a little loss in the composites when compared to the pure zirconia.en
dc.description.affiliationFederal Institute of Education Science and Technology of São Paulo – IFSP, Pedro Cavalo St, 709, SP
dc.description.affiliationSão Paulo State University – UNESP, Eng. Luis Edmundo Carrijo Coube Ave., 14-01, SP
dc.description.affiliationUniversity of São Paulo – USP, Trabalhador São Carlense Ave., 400, SP
dc.description.affiliationUnespSão Paulo State University – UNESP, Eng. Luis Edmundo Carrijo Coube Ave., 14-01, SP
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipIdFAPESP: 2016/23910-0
dc.description.sponsorshipIdFAPESP: 2019/20000-1
dc.description.sponsorshipIdCNPq: 309640/2021-0
dc.format.extent3323-3335
dc.identifierhttp://dx.doi.org/10.1007/s00170-022-10127-0
dc.identifier.citationInternational Journal of Advanced Manufacturing Technology, v. 122, n. 7-8, p. 3323-3335, 2022.
dc.identifier.doi10.1007/s00170-022-10127-0
dc.identifier.issn1433-3015
dc.identifier.issn0268-3768
dc.identifier.scopus2-s2.0-85138131278
dc.identifier.urihttp://hdl.handle.net/11449/249156
dc.language.isoeng
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology
dc.sourceScopus
dc.subjectCarbon nanotubes
dc.subjectComposite
dc.subjectFractography
dc.subjectReducing atmosphere
dc.subjectZirconia
dc.titleZrO2-CNT composite production through reducing atmosphereen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-8611-4150[1]
unesp.author.orcid0000-0003-0018-3305[2]
unesp.author.orcid0000-0002-9979-0270[3]
unesp.author.orcid0000-0002-2259-9910[4]
unesp.author.orcid0000-0003-1300-4978[5]
unesp.departmentEngenharia Mecânica - FEBpt

Arquivos