Publicação: Evaluating route to impact convergence of the harmonic balance method for piecewise-smooth systems
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
In this work, we investigate the applicability of the harmonic balance method (HBM) to predict periodic solutions of a single degree-of-freedom forced Duffing oscillator with freeplay nonlinearity. By studying the route to impact, which refers to a parametric study as the contact stiffness increases from soft to hard, the convergence behavior of the HBM can be understood in terms of the strength of the non-smooth forcing term. HBM results are compared to time-integration results to facilitate an evaluation of the accuracy of nonlinear periodic responses. An additional contribution of this study is to perform convergence and stability analysis specifically for isolas generated by the non-smooth nonlinearity. Residual error analysis is used to determine the approximate number of harmonics required to get results accurate to a given error tolerance. Hill's method and Floquet theory are employed to compute the stability of periodic solutions and identify the types of bifurcations in the system.
Descrição
Palavras-chave
Convergence analysis, Floquet stability, Harmonic balance, Isolas, Piecewise-smooth
Idioma
Inglês
Como citar
International Journal of Non-Linear Mechanics, v. 152.