Publicação: Aircraft interior failure pattern recognition utilizing text mining and neural networks
dc.contributor.author | Rodrigues, Rogerio S. | |
dc.contributor.author | Balestrassi, Pedro Paulo | |
dc.contributor.author | Paiva, Anderson P. | |
dc.contributor.author | Garcia-Diaz, Alberto | |
dc.contributor.author | Pontes, Fabricio J. [UNESP] | |
dc.contributor.institution | Universidade Federal de Itajubá (UNIFEI) | |
dc.contributor.institution | Univ Tennessee | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2014-05-20T15:32:11Z | |
dc.date.available | 2014-05-20T15:32:11Z | |
dc.date.issued | 2012-06-01 | |
dc.description.abstract | Being more competitive is routine in the aeronautical sector. Airline competitiveness is affected by such factors as time, price, reliability, availability, safety, technology, quality, and information management. To remain competitive, airlines must promptly identify and correct failures found in their fleet. This study aims at reducing the time spent on identifying and correcting such failures logged. Utilizing Text Mining techniques during the pre-processing phase, our study processes an extensive database of events from commercial regional jets. The result is a unique list of keywords that describes each reported failure. Later, an Artificial Neural Network (ANN) identifies and classifies failure patterns, yielding a respective disposition for a given failure pattern. Approximately five years of historical data was used to build and validate the present model. Results obtained were promising. | en |
dc.description.affiliation | Universidade Federal de Itajubá (UNIFEI), Itajuba, Brazil | |
dc.description.affiliation | Univ Tennessee, Knoxville, TN 37919 USA | |
dc.description.affiliation | Univ Estadual Paulista UNESP, Guaratingueta, SP, Brazil | |
dc.description.affiliationUnesp | Univ Estadual Paulista UNESP, Guaratingueta, SP, Brazil | |
dc.description.sponsorship | Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) | |
dc.format.extent | 741-766 | |
dc.identifier | http://dx.doi.org/10.1007/s10844-011-0176-1 | |
dc.identifier.citation | Journal of Intelligent Information Systems. Dordrecht: Springer, v. 38, n. 3, p. 741-766, 2012. | |
dc.identifier.doi | 10.1007/s10844-011-0176-1 | |
dc.identifier.issn | 0925-9902 | |
dc.identifier.uri | http://hdl.handle.net/11449/41154 | |
dc.identifier.wos | WOS:000304100400008 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Journal of Intelligent Information Systems | |
dc.relation.ispartofjcr | 1.107 | |
dc.relation.ispartofsjr | 0,481 | |
dc.rights.accessRights | Acesso restrito | pt |
dc.source | Web of Science | |
dc.subject | Artificial Neural Network (ANN) | en |
dc.subject | Text mining | en |
dc.subject | Failure pattern | en |
dc.subject | Aircraft log book | en |
dc.subject | Repair | en |
dc.title | Aircraft interior failure pattern recognition utilizing text mining and neural networks | en |
dc.type | Artigo | pt |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0003-2772-0043[2] | |
unesp.author.orcid | 0000-0002-8199-411X[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetá | pt |
Arquivos
Licença do Pacote
1 - 2 de 2
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição:
Carregando...
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: