Logotipo do repositório
 

Publicação:
Aircraft interior failure pattern recognition utilizing text mining and neural networks

dc.contributor.authorRodrigues, Rogerio S.
dc.contributor.authorBalestrassi, Pedro Paulo
dc.contributor.authorPaiva, Anderson P.
dc.contributor.authorGarcia-Diaz, Alberto
dc.contributor.authorPontes, Fabricio J. [UNESP]
dc.contributor.institutionUniversidade Federal de Itajubá (UNIFEI)
dc.contributor.institutionUniv Tennessee
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T15:32:11Z
dc.date.available2014-05-20T15:32:11Z
dc.date.issued2012-06-01
dc.description.abstractBeing more competitive is routine in the aeronautical sector. Airline competitiveness is affected by such factors as time, price, reliability, availability, safety, technology, quality, and information management. To remain competitive, airlines must promptly identify and correct failures found in their fleet. This study aims at reducing the time spent on identifying and correcting such failures logged. Utilizing Text Mining techniques during the pre-processing phase, our study processes an extensive database of events from commercial regional jets. The result is a unique list of keywords that describes each reported failure. Later, an Artificial Neural Network (ANN) identifies and classifies failure patterns, yielding a respective disposition for a given failure pattern. Approximately five years of historical data was used to build and validate the present model. Results obtained were promising.en
dc.description.affiliationUniversidade Federal de Itajubá (UNIFEI), Itajuba, Brazil
dc.description.affiliationUniv Tennessee, Knoxville, TN 37919 USA
dc.description.affiliationUniv Estadual Paulista UNESP, Guaratingueta, SP, Brazil
dc.description.affiliationUnespUniv Estadual Paulista UNESP, Guaratingueta, SP, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.format.extent741-766
dc.identifierhttp://dx.doi.org/10.1007/s10844-011-0176-1
dc.identifier.citationJournal of Intelligent Information Systems. Dordrecht: Springer, v. 38, n. 3, p. 741-766, 2012.
dc.identifier.doi10.1007/s10844-011-0176-1
dc.identifier.issn0925-9902
dc.identifier.urihttp://hdl.handle.net/11449/41154
dc.identifier.wosWOS:000304100400008
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofJournal of Intelligent Information Systems
dc.relation.ispartofjcr1.107
dc.relation.ispartofsjr0,481
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjectArtificial Neural Network (ANN)en
dc.subjectText miningen
dc.subjectFailure patternen
dc.subjectAircraft log booken
dc.subjectRepairen
dc.titleAircraft interior failure pattern recognition utilizing text mining and neural networksen
dc.typeArtigopt
dcterms.licensehttp://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0
dcterms.rightsHolderSpringer
dspace.entity.typePublication
unesp.author.orcid0000-0003-2772-0043[2]
unesp.author.orcid0000-0002-8199-411X[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos

Licença do Pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: