Logotipo do repositório
 

Publicação:
The effect of TiO2 nanotube morphological engineering and ZnS quantum dots on the water splitting reaction: A theoretical and experimental study

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Acesso abertoAcesso Aberto

Resumo

Ordered arrays of TiO2 nanotubes with smooth and rippled morphologies were prepared by one-step titanium oxidation in NH4F and ethylene glycol solution. The samples were then decorated with ZnS using a microwave-assisted solvothermal method. The experiments under constant or pulsed applied voltage resulted in smooth and rippled TiO2material morphologies, respectively. Field emission scanning electron microscopy, incident photon-to-current efficiency, linear sweep voltammetry and electrochemical impedance spectroscopy were used to investigate the structure and morphology of the TiO2 nanotubes, along with their photoelectrochemical activity in the water splitting reaction. An envelope function was proposed to correlate the anisotropic morphologies and broad distribution of mobility due to the random nature of charge carrier transport. The smooth and rippled morphologies were evaluated using the transmission line model. First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level are conducted to obtain a better understanding of optical properties of TiO2.

Descrição

Palavras-chave

Materials modelling, Morphology control, Rietveld refinement, TiO2 nanotubes, Water splitting

Idioma

Inglês

Como citar

International Journal of Hydrogen Energy, v. 43, n. 14, p. 6838-6850, 2018.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação