Logotipo do repositório
 

Publicação:
Development of neurofuzzy architecture for solving the N-Queens problem

dc.contributor.authorSilva, Ivan Nunes da
dc.contributor.authorUlson, Jose Alfredo Covolan [UNESP]
dc.contributor.authorSouza, André Nunes de [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:14Z
dc.date.available2014-05-20T13:27:14Z
dc.date.issued2005-11-01
dc.description.abstractNeural networks are dynamic systems consisting of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural networks for solving the N-Queens problem. More specifically, a modified Hopfield network is developed and its internal parameters are explicitly computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the considered problem. The network is shown to be completely stable and globally convergent to the solutions of the N-Queens problem. A fuzzy logic controller is also incorporated in the network to minimize convergence time. Simulation results are presented to validate the proposed approach.en
dc.description.affiliationUNESP, State Univ São Paulo, Dept Elect Engn, FE DEE, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUNESP, State Univ São Paulo, Dept Elect Engn, FE DEE, BR-17033360 Bauru, SP, Brazil
dc.format.extent717-734
dc.identifierhttp://dx.doi.org/10.1080/03081070500422695
dc.identifier.citationInternational Journal of General Systems. Abingdon: Taylor & Francis Ltd, v. 34, n. 6, p. 717-734, 2005.
dc.identifier.doi10.1080/03081070500422695
dc.identifier.issn0308-1079
dc.identifier.lattes4517057121462258
dc.identifier.lattes8212775960494686
dc.identifier.urihttp://hdl.handle.net/11449/130757
dc.identifier.wosWOS:000234290400004
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofInternational Journal of General Systems
dc.relation.ispartofjcr2.931
dc.relation.ispartofsjr1,665
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectNeural network architecturept
dc.subjectCombinatorial optimizationpt
dc.subjectHopfield networkpt
dc.subjectFuzzy inference systemspt
dc.subjectRecurrent neural networkpt
dc.titleDevelopment of neurofuzzy architecture for solving the N-Queens problemen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
dspace.entity.typePublication
unesp.author.lattes4517057121462258
unesp.author.lattes8212775960494686[3]
unesp.author.orcid0000-0002-8617-5404[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos