Logo do repositório

A Bayesian Hierarchical Model to create synthetic Power Distribution Systems

dc.contributor.authorCaetano, Henrique O.
dc.contributor.authorDesuó N., Luiz
dc.contributor.authorFogliatto, Matheus de S.S. [UNESP]
dc.contributor.authorRibeiro, Vitor P. [UNESP]
dc.contributor.authorBalestieri, José A.P. [UNESP]
dc.contributor.authorMaciel, Carlos D. [UNESP]
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.date.accessioned2025-04-29T18:42:12Z
dc.date.issued2024-10-01
dc.description.abstractThe growing complexity of Power Distribution Systems, driven by distributed generation, renewable energy integration, and increasing demand, has led to restricted access to DS data due to security and privacy concerns. This study addresses limited data accessibility by proposing a hybrid approach for crafting synthetic power distribution systems tailored for power system analysis and control. Synthetic power distribution systems refer to artificially generated models that faithfully replicate real-world DS features while upholding security and privacy constraints. This innovative methodology merges a Bayesian Hierarchical Model with Markov Chain Monte Carlo techniques, utilizing georeferenced data to capture intricate system dependencies, feeder configurations, switch statuses, and load node distributions. Leveraging OpenStreetMaps for DS topology, the approach incorporates expert knowledge and real-world data. Results highlight the methodology's ability to evaluate credible intervals for parameters, facilitating a probabilistic assessment of uncertainties and enhancing decision support in power system analysis and control. Findings affirm the hybrid approach's efficacy in generating realistic synthetic DSs, bridging the gap between statistical and georeferenced methodologies for advanced power system analysis and control. The capacity to generate synthetic DSs provides valuable insights into power system dynamics, addressing security, privacy, and data accessibility concerns for a more informed decision-making process.en
dc.description.affiliationDepartment of Electrical and Computing Engineering University of São Paulo (EESC/USP) - São Carlos
dc.description.affiliationFaculty of Engineering and Science São Paulo State University (UNESP) - Guaratinguetá
dc.description.affiliationUnespFaculty of Engineering and Science São Paulo State University (UNESP) - Guaratinguetá
dc.description.sponsorshipInternational Business Machines Corporation
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipIdFAPESP: 2021/12220-1
dc.description.sponsorshipIdFAPESP: 2023/07634-7
dc.description.sponsorshipIdCAPES: 88887.682748/2022-00
dc.identifierhttp://dx.doi.org/10.1016/j.epsr.2024.110706
dc.identifier.citationElectric Power Systems Research, v. 235.
dc.identifier.doi10.1016/j.epsr.2024.110706
dc.identifier.issn0378-7796
dc.identifier.scopus2-s2.0-85197085657
dc.identifier.urihttps://hdl.handle.net/11449/299357
dc.language.isoeng
dc.relation.ispartofElectric Power Systems Research
dc.sourceScopus
dc.subjectBayesian Hierarchical Model
dc.subjectDistribution systems
dc.subjectGeoreferenced data
dc.subjectSynthetic test cases
dc.titleA Bayesian Hierarchical Model to create synthetic Power Distribution Systemsen
dc.typeArtigopt
dspace.entity.typePublication
relation.isOrgUnitOfPublicationa4071986-4355-47c3-a5a3-bd4d1a966e4f
relation.isOrgUnitOfPublication.latestForDiscoverya4071986-4355-47c3-a5a3-bd4d1a966e4f
unesp.author.orcid0000-0002-3624-7924[1]
unesp.author.orcid0000-0001-8629-1870[2]
unesp.author.orcid0000-0001-7683-4843[3]
unesp.author.orcid0000-0001-8458-8144[4]
unesp.author.orcid0000-0003-0762-0854[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos