Publicação: Neural approach for solving several types of optimization problems
dc.contributor.author | da Silva, I. N. | |
dc.contributor.author | Amaral, W. C. | |
dc.contributor.author | Arruda, L. V. R. | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Estadual de Campinas (UNICAMP) | |
dc.contributor.institution | Fed Ctr Educ Technol | |
dc.date.accessioned | 2014-05-20T15:28:36Z | |
dc.date.available | 2014-05-20T15:28:36Z | |
dc.date.issued | 2006-03-01 | |
dc.description.abstract | Neural networks consist of highly interconnected and parallel nonlinear processing elements that are shown to be extremely effective in computation. This paper presents an architecture of recurrent neural net-works that can be used to solve several classes of optimization problems. More specifically, a modified Hopfield network is developed and its inter-nal parameters are computed explicitly using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points, which represent a solution of the problem considered. The problems that can be treated by the proposed approach include combinatorial optimiza-tion problems, dynamic programming problems, and nonlinear optimization problems. | en |
dc.description.affiliation | State Univ São Paulo, Dept Elect Engn, Bauru, SP, Brazil | |
dc.description.affiliation | Univ Estadual Campinas, Dept Comp Engn, Campinas, SP, Brazil | |
dc.description.affiliation | Fed Ctr Educ Technol, CEFET PR, CPGEI, Curitiba, Parana, Brazil | |
dc.description.affiliationUnesp | State Univ São Paulo, Dept Elect Engn, Bauru, SP, Brazil | |
dc.format.extent | 563-580 | |
dc.identifier | http://dx.doi.org/10.1007/s10957-006-9032-9 | |
dc.identifier.citation | Journal of Optimization Theory and Applications. New York: Springer/plenum Publishers, v. 128, n. 3, p. 563-580, 2006. | |
dc.identifier.doi | 10.1007/s10957-006-9032-9 | |
dc.identifier.issn | 0022-3239 | |
dc.identifier.uri | http://hdl.handle.net/11449/38376 | |
dc.identifier.wos | WOS:000241554100005 | |
dc.language.iso | eng | |
dc.publisher | Springer | |
dc.relation.ispartof | Journal of Optimization Theory and Applications | |
dc.relation.ispartofjcr | 1.234 | |
dc.relation.ispartofsjr | 0,813 | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Web of Science | |
dc.subject | recurrent neural networks | pt |
dc.subject | nonlinear optimization | pt |
dc.subject | dynamic programming | pt |
dc.subject | combinatorial optimization | pt |
dc.subject | Hopfield network | pt |
dc.title | Neural approach for solving several types of optimization problems | en |
dc.type | Artigo | |
dcterms.license | http://www.springer.com/open+access/authors+rights?SGWID=0-176704-12-683201-0 | |
dcterms.rightsHolder | Springer | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0002-1296-5454[1] | |
unesp.author.orcid | 0000-0002-5704-8131[3] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Faculdade de Engenharia, Bauru | pt |
unesp.department | Engenharia Elétrica - FEB | pt |
Arquivos
Licença do Pacote
1 - 1 de 1
Nenhuma Miniatura disponível
- Nome:
- license.txt
- Tamanho:
- 1.71 KB
- Formato:
- Item-specific license agreed upon to submission
- Descrição: