Publicação: A Hybrid Approach using Progressive and Genetic Algorithms for Improvements in Multiple Sequence Alignments
dc.contributor.author | Zafalon, Geraldo Francisco Donegá [UNESP] | |
dc.contributor.author | Gomes, Vitoria Zanon [UNESP] | |
dc.contributor.author | Amorim, Anderson Rici [UNESP] | |
dc.contributor.author | Valêncio, Carlos Roberto [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
dc.contributor.institution | Universidade de São Paulo (USP) | |
dc.contributor.institution | Universidade Paulista | |
dc.date.accessioned | 2023-07-29T14:03:49Z | |
dc.date.available | 2023-07-29T14:03:49Z | |
dc.date.issued | 2021-01-01 | |
dc.description.abstract | The multiple sequence alignment is one of the main tasks in bioinformatics. It is used in different important biological analysis, such as function and structure prediction of unknown proteins. There are several approaches to perform multiple sequence alignment and the use of heuristics and meta-heuristics stands out because of the search ability of these methods, which generally leads to good results in a reasonable amount of time. The progressive alignment and genetic algorithm are among the most used heuristics and meta-heuristics to perform multiple sequence alignment. However, both methods have disadvantages, such as error propagation in the case of progressive alignment and local optima results in the case of genetics algorithm. Thus, this work proposes a new hybrid refinement phase using a progressive approach to locally realign the multiple sequence alignment produced by genetic algorithm based tools. Our results show that our method is able to improve the quality of the alignments of all families from BAliBase. Considering Q and TC quality measures from BaliBase, we have obtained the improvements of 55% for Q and 167% for TC. Then, with these results we can provide more biologically significant results. | en |
dc.description.affiliation | Department of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP | |
dc.description.affiliation | Department of Computer and Digital Systems Engineering Universidade de São Paulo (USP) Escola Politécnica, Av. Prof. Luciano Gualberto, Travessa 3, 158, Butantã, SP | |
dc.description.affiliation | Department ICET Universidade Paulista, Avenida Presidente Juscelino Kubitschek de Oliveira, s/n, Jardim Tarraf II, SP | |
dc.description.affiliationUnesp | Department of Computer Science and Statistics Universidade Estadual Paulista (UNESP), Rua Cristóvão Colombo, 2265, Jardim Nazareth, SP | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2019/00030-3 | |
dc.format.extent | 384-391 | |
dc.identifier.citation | International Conference on Enterprise Information Systems, ICEIS - Proceedings, v. 2, p. 384-391. | |
dc.identifier.issn | 2184-4992 | |
dc.identifier.scopus | 2-s2.0-85137963975 | |
dc.identifier.uri | http://hdl.handle.net/11449/249151 | |
dc.language.iso | eng | |
dc.relation.ispartof | International Conference on Enterprise Information Systems, ICEIS - Proceedings | |
dc.source | Scopus | |
dc.subject | Bioinformatics | |
dc.subject | Genetic Algorithm | |
dc.subject | Hybrid Multiple Sequence Alignment | |
dc.subject | Multiple Sequence Alignment | |
dc.title | A Hybrid Approach using Progressive and Genetic Algorithms for Improvements in Multiple Sequence Alignments | en |
dc.type | Trabalho apresentado em evento | |
dspace.entity.type | Publication | |
unesp.author.orcid | 0000-0003-2384-011X 0000-0003-2384-011X[1] | |
unesp.author.orcid | 0000-0003-4176-566X[2] | |
unesp.author.orcid | 0000-0001-7862-7530 0000-0001-7862-7530[3] | |
unesp.author.orcid | 0000-0002-9325-3159[4] | |
unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Preto | pt |
unesp.department | Ciências da Computação e Estatística - IBILCE | pt |