Publicação:
THE REDUCTIVE PERTURBATION METHOD AND THE KORTEWEG-DE VRIES HIERARCHY

dc.contributor.authorKraenkel, Roberto André [UNESP]
dc.contributor.authorPereira, J. G.
dc.contributor.authorManna, M. A.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNIV MONTPELLIER 2
dc.date.accessioned2014-05-20T15:21:11Z
dc.date.available2014-05-20T15:21:11Z
dc.date.issued1995-06-01
dc.description.abstractBy using the reductive perturbation method of Taniuti with the introduction of an infinite sequence of slow time variables tau(1), tau(3), tau(5), ..., we study the propagation of long surface-waves in a shallow inviscid fluid. The Korteweg-de Vries (KdV) equation appears as the lowest order amplitude equation in slow variables. In this context, we show that, if the lowest order wave amplitude zeta(0) satisfies the KdV equation in the time tau(3), it must satisfy the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1), With n = 2, 3, 4,.... AS a consequence of this fact, we show with an explicit example that the secularities of the evolution equations for the higher-order terms (zeta(1), zeta(2),...) of the amplitude can be eliminated when zeta(0) is a solitonic solution to the KdV equation. By reversing this argument, we can say that the requirement of a secular-free perturbation theory implies that the amplitude zeta(0) satisfies the (2n+1)th order equation of the KdV hierarchy in the time tau(2n+1) This essentially means that the equations of the KdV hierarchy do play a role in perturbation theory. Thereafter, by considering a solitary-wave solution, we show, again with an explicit, example that the elimination of secularities through the use of the higher order KdV hierarchy equations corresponds, in the laboratory coordinates, to a renormalization of the solitary-wave velocity. Then, we conclude that this procedure of eliminating secularities is closely related to the renormalization technique developed by Kodama and Taniuti.en
dc.description.affiliationUNIV ESTADUAL PAULISTA,INST FIS TEOR,BR-01405900 SAO PAULO,BRAZIL
dc.description.affiliationUNIV MONTPELLIER 2,F-34095 MONTPELLIER,FRANCE
dc.description.affiliationUnespUNIV ESTADUAL PAULISTA,INST FIS TEOR,BR-01405900 SAO PAULO,BRAZIL
dc.format.extent389-403
dc.identifierhttp://dx.doi.org/10.1007/BF00994645
dc.identifier.citationActa Applicandae Mathematicae. Dordrecht: Kluwer Academic Publ, v. 39, n. 1-3, p. 389-403, 1995.
dc.identifier.doi10.1007/BF00994645
dc.identifier.issn0167-8019
dc.identifier.lattes1599966126072450
dc.identifier.urihttp://hdl.handle.net/11449/32358
dc.identifier.wosWOS:A1995QW85700023
dc.language.isoeng
dc.publisherKluwer Academic Publ
dc.relation.ispartofActa Applicandae Mathematicae
dc.relation.ispartofjcr0.910
dc.relation.ispartofsjr0,675
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectREDUCTIVE PERTURBATION METHODpt
dc.subjectMULTIPLE TIME FORMALISMpt
dc.subjectHIGHER-ORDER EVOLUTION EQUATIONSpt
dc.titleTHE REDUCTIVE PERTURBATION METHOD AND THE KORTEWEG-DE VRIES HIERARCHYen
dc.typeArtigo
dcterms.licensehttp://www.springer.com/open+access/authors+rights
dcterms.rightsHolderKluwer Academic Publ
dspace.entity.typePublication
unesp.author.lattes1599966126072450
unesp.author.orcid0000-0001-5602-5184[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Nenhuma Miniatura disponível
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: