Lower bounds for the cyclicity of centers of quadratic three-dimensional systems
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Autores
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
We consider quadratic three-dimensional differential systems having a Hopf singular point. We study their cyclicity when the singular point is a center on the center manifold using higher-order developments of the Lyapunov constants. As a result, we make a chart of the cyclicity by establishing the lower bounds for several known systems in the literature, including the Rössler, Lorenz, and Moon-Rand systems. Moreover, we construct an example of a jerk system to obtain 12 limit cycles bifurcating from the center, which is a new lower bound for three-dimensional quadratic systems.
Descrição
Palavras-chave
Bifurcation, Center problem, Cyclicity, Hopf singularities, Lyapunov constants
Idioma
Inglês
Citação
Journal of Mathematical Analysis and Applications, v. 530, n. 1, 2024.




