Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Mass dimension one fermions: Constructing darkness

dc.contributor.authorAhluwalia, Dharam Vir
dc.contributor.authorSilva, Julio M. Hoff da [UNESP]
dc.contributor.authorLee, Cheng-Yang
dc.contributor.authorLiu, Yu-Xiao
dc.contributor.authorPereira, Saulo H. [UNESP]
dc.contributor.authorSorkhi, Masoumeh Moazzen
dc.contributor.institutionCenter for the Studies of the Glass Bead Game
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionSichuan University
dc.contributor.institutionLanzhou University
dc.contributor.institutionKosar University of Bojnord
dc.date.accessioned2023-03-01T20:41:04Z
dc.date.available2023-03-01T20:41:04Z
dc.date.issued2022-07-12
dc.description.abstractLet Θ be the Wigner time reversal operator for spin half and let ϕ be a Weyl spinor. Then, for a left-transforming ϕ, the construct ζλΘϕ∗ yields a right-transforming spinor. If instead, ϕ is a right-transforming spinor, then the construct ζρΘϕ∗ results in a left-transforming spinor (ζλ,ρ are phase factors). This allows us to introduce two sets of four-component spinors. Setting ζλ and ζρ to ±i renders all eight spinors as eigenspinor of the charge conjugation operator C (called ELKO). This allows us to introduce two quantum fields. A calculation of the vacuum expectation value of the time-ordered product of the fields and their adjoints reveals the mass dimension of the fields to be one. Both fields are local in the canonical sense of quantum field theory. Interestingly, one of the fields is fermionic and the other bosonic. The mass dimension of the introduced fermionic fields and the matter fields of the Standard Model carry an intrinsic mismatch. As such, they provide natural darkness for the new fields with respect to the Standard Model doublets. The statistics and locality are controlled by a set of phases. These are explicitly given. Then we observe that in pμpμ= m2, Dirac took the simplest square root of the 4 × 4 identity matrix I (in I×m2, while introducing γμpμ as the square root of the left hand side of the dispersion relation), and as such he implicitly ignored the remaining fifteen. When we examine the remaining roots, we obtain additional bosonic and fermionic dark matter candidates of spin half. We point out that by early nineteen seventies, Dirac had suspected the existence of spin half bosons, in the same space as his fermions. This is interweaved with a detailed discussion of duals and adjoints. We study the fermionic self-interaction and interactions with a real scalar field. We show that a consistent interacting theory can be formulated using the ELKO adjoint up to one-loop thus circumventing the earlier problem of unitarity violation. We then undertake quantum field theoretic calculation that establishes the Newtonian gravitational interaction for a mass dimension one dark matter candidate. The report ends: (a) by studying the partition function and main thermodynamic properties of the mass dimension one fermionic field in the context of the dark matter halo of galaxies. For the Milky Way, the observational data of rotation curve fits quite well for a fermionic mass of about 23 eV; and (b) by introducing higher-dimensional ELKOs in braneworld scenario. After a brief introduction of some braneworld models, we review the localization of higher-dimensional ELKOs on flat and bent branes with appropriate localization mechanisms. We discuss the massless and massive Kaluza–Klein modes of ELKO fields on branes and give a comparison with other fields.en
dc.description.affiliationCenter for the Studies of the Glass Bead Game, Unit 29, 220 Normanby Road, Notting Hill
dc.description.affiliationDepartamento de Física Faculdade de Engenharia de Guaratinguetá Universidade Estadual Paulista UNESP, Av. Dr. Ariberto Pereira da Cunha
dc.description.affiliationCenter for Theoretical Physics College of Physical Science and Technology Sichuan University
dc.description.affiliationInstitute of Theoretical Physics and Lanzhou Center for Theoretical Physics School of Physical Sciences and Technology Lanzhou University
dc.description.affiliationDepartment of Physics Faculty of Basic Sciences Kosar University of Bojnord
dc.description.affiliationUnespDepartamento de Física Faculdade de Engenharia de Guaratinguetá Universidade Estadual Paulista UNESP, Av. Dr. Ariberto Pereira da Cunha
dc.description.sponsorshipNational Natural Science Foundation of China
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipHigher Education Discipline Innovation Project
dc.description.sponsorshipIdNational Natural Science Foundation of China: 11875151
dc.description.sponsorshipIdNational Natural Science Foundation of China: 12047501
dc.description.sponsorshipIdCNPq: 303561/2018-1
dc.description.sponsorshipIdCNPq: 303583/2018-5
dc.description.sponsorshipIdHigher Education Discipline Innovation Project: B20063
dc.format.extent1-43
dc.identifierhttp://dx.doi.org/10.1016/j.physrep.2022.04.003
dc.identifier.citationPhysics Reports, v. 967, p. 1-43.
dc.identifier.doi10.1016/j.physrep.2022.04.003
dc.identifier.issn0370-1573
dc.identifier.scopus2-s2.0-85129774770
dc.identifier.urihttp://hdl.handle.net/11449/240964
dc.language.isoeng
dc.relation.ispartofPhysics Reports
dc.sourceScopus
dc.subjectBrane
dc.subjectDark energy
dc.subjectDark matter
dc.subjectELKO
dc.subjectLocality and causality phases
dc.subjectMass dimension one boson of spin half
dc.subjectMass dimension one fermions of spin half
dc.titleMass dimension one fermions: Constructing darknessen
dc.typeResenha
dspace.entity.typePublication
unesp.author.orcid0000-0001-7405-8852[2]
unesp.author.orcid0000-0002-4117-4176[4]
unesp.author.orcid0000-0001-9471-583X[5]
unesp.departmentFísica e Química - FEGpt

Arquivos