Logo do repositório

Estimating the effective reproduction number for heterogeneous models using incidence data

dc.contributor.authorJorge, D. C.P. [UNESP]
dc.contributor.authorOliveira, J. F.
dc.contributor.authorMiranda, J. G.V.
dc.contributor.authorAndrade, R. F.S.
dc.contributor.authorPinho, S. T.R.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionFundação Oswaldo Cruz
dc.contributor.institutionUniversidade Federal da Bahia (UFBA)
dc.date.accessioned2023-07-29T13:21:29Z
dc.date.available2023-07-29T13:21:29Z
dc.date.issued2022-09-07
dc.description.abstractThe effective reproduction number, R(t), plays a key role in the study of infectious diseases, indicating the current average number of new infections caused by an infected individual in an epidemic process. Estimation methods for the time evolution of R(t), using incidence data, rely on the generation interval distribution, g(τ), which is usually obtained from empirical data or theoretical studies using simple epidemic models. However, for systems that present heterogeneity, either on the host population or in the expression of the disease, there is a lack of data and of a suitable general methodology to obtain g(τ). In this work, we use mathematical models to bridge this gap. We present a general methodology for obtaining explicit expressions of the reproduction numbers and the generation interval distributions, within and between model sub-compartments provided by an arbitrary compartmental model. Additionally, we present the appropriate expressions to evaluate those reproduction numbers using incidence data. To highlight the relevance of such methodology, we apply it to the spread of COVID-19 in municipalities of the state of Rio de Janeiro, Brazil. Using two meta-population models, we estimate the reproduction numbers and the contributions of each municipality in the generation of cases in all others.en
dc.description.affiliationInstituto de Física Teórica Universidade Estadual Paulista - UNESP, R. Dr. Teobaldo Ferraz 271
dc.description.affiliationCenter of Data and Knowledge Integration for Health (CIDACS) Instituto Gonçalo Moniz Fundação Oswaldo Cruz, Bahia
dc.description.affiliationInstituto de Física Universidade Federal da Bahia, Bahia
dc.description.affiliationUnespInstituto de Física Teórica Universidade Estadual Paulista - UNESP, R. Dr. Teobaldo Ferraz 271
dc.identifierhttp://dx.doi.org/10.1098/rsos.220005
dc.identifier.citationRoyal Society Open Science, v. 9, n. 9, 2022.
dc.identifier.doi10.1098/rsos.220005
dc.identifier.issn2054-5703
dc.identifier.scopus2-s2.0-85138193949
dc.identifier.urihttp://hdl.handle.net/11449/247629
dc.language.isoeng
dc.relation.ispartofRoyal Society Open Science
dc.sourceScopus
dc.subjectCOVID-19
dc.subjecteffective reproduction number
dc.subjectmathematical models
dc.subjectmeta-population models
dc.titleEstimating the effective reproduction number for heterogeneous models using incidence dataen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0003-4707-3234 0000-0003-4707-3234[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos