Logo do repositório
 

Identification of lubricant contamination by biodiesel using vibration analysis and neural network

dc.contributor.authorGoncalves, Aparecido Carlos [UNESP]
dc.contributor.authorPadovese, Linilson Rodrigues [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:29:25Z
dc.date.available2014-05-20T13:29:25Z
dc.date.issued2012-01-01
dc.description.abstractPurpose - The purpose of this paper is to provide information on lubricant contamination by biodiesel using vibration and neural network.Design/methodology/approach - The possible contamination of lubricants is verified by analyzing the vibration and neural network of a bench test under determinated conditions.Findings - Results have shown that classical signal analysis methods could not reveal any correlation between the signal and the presence of contamination, or contamination grade. on other hand, the use of probabilistic neural network (PNN) was very successful in the identification and classification of contamination and its grade.Research limitations/implications - This study was done for some specific kinds of biodiesel. Other types of biodiesel could be analyzed.Practical implications Contamination information is presented in the vibration signal, even if it is not evident by classical vibration analysis. In addition, the use of PNN gives a relatively simple and easy-to-use detection tool with good confidence. The training process is fast, and allows implementation of an adaptive training algorithm.Originality/value - This research could be extended to an internal combustion engine in order to verify a possible contamination by biodiesel.en
dc.description.affiliationUNESP Univ State São Paulo, Dept Mech Engn, Ilha Solteira, Brazil
dc.description.affiliationUnespUNESP Univ State São Paulo, Dept Mech Engn, Ilha Solteira, Brazil
dc.format.extent104-110
dc.identifierhttp://dx.doi.org/10.1108/00368791211208714
dc.identifier.citationIndustrial Lubrication and Tribology. Bingley: Emerald Group Publishing Limited, v. 64, n. 2-3, p. 104-110, 2012.
dc.identifier.doi10.1108/00368791211208714
dc.identifier.issn0036-8792
dc.identifier.lattes7516385196117516
dc.identifier.urihttp://hdl.handle.net/11449/9920
dc.identifier.wosWOS:000305263300006
dc.language.isoeng
dc.publisherEmerald Group Publishing Limited
dc.relation.ispartofIndustrial Lubrication and Tribology
dc.relation.ispartofjcr0.763
dc.relation.ispartofsjr0,334
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectLubricantsen
dc.subjectCondition monitoringen
dc.subjectContaminationen
dc.subjectVibrationen
dc.subjectBearingsen
dc.subjectCrankcase oilsen
dc.subjectNeural networksen
dc.subjectInternal combustion enginesen
dc.subjectProbabilistic neural networken
dc.titleIdentification of lubricant contamination by biodiesel using vibration analysis and neural networken
dc.typeArtigo
dcterms.licensehttp://www.emeraldinsight.com/licensing/permissions.htm
dcterms.rightsHolderEmerald Group Publishing Limited
dspace.entity.typePublication
unesp.author.lattes7516385196117516[1]
unesp.author.orcid0000-0001-5376-3392[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Ilha Solteirapt
unesp.departmentEngenharia Mecânica - FEISpt

Arquivos

Licença do pacote

Agora exibindo 1 - 2 de 2
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição:
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: