Publicação:
Resonance and chaos .1. First-order interior resonances

Nenhuma Miniatura disponível

Data

1997-03-01

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Edp Sciences S A

Tipo

Artigo

Direito de acesso

Acesso restrito

Resumo

Analytical models for studying the dynamical behaviour of objects near interior, mean motion resonances are reviewed in the context of the planar, circular, restricted three-body problem. The predicted widths of the resonances are compared with the results of numerical integrations using Poincare surfaces of section with a mass ratio of 10(-3) (similar to the Jupiter-Sun case). It is shown that for very low eccentricities the phase space between the 2:1 and 3:2 resonances is predominantly regular, contrary to simple theoretical predictions based on overlapping resonance. A numerical study of the 'evolution' of the stable equilibrium point of the 3:2 resonance as a function of the Jacobi constant shows how apocentric libration at the 2:1 resonance arises; there is evidence of a similar mechanism being responsible for the centre of the 4:3 resonance evolving towards 3:2 apocentric libration. This effect is due to perturbations from other resonances and demonstrates that resonances cannot be considered in isolation. on theoretical grounds the maximum libration width of first-order resonances should increase as the orbit of the perturbing secondary is approached. However, in reality the width decreases due to the chaotic effect of nearby resonances.

Descrição

Idioma

Inglês

Como citar

Astronomy & Astrophysics. Les Ulis Cedex A: Edp Sciences S A, v. 319, n. 1, p. 290-304, 1997.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação