Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Using Neural Network Force Fields to Ascertain the Quality of Ab Initio Simulations of Liquid Water

dc.contributor.authorTorres, Alberto [UNESP]
dc.contributor.authorPedroza, Luana S.
dc.contributor.authorFernandez-Serra, Marivi
dc.contributor.authorRocha, Alexandre R. [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionState University of New York at Stonybrook
dc.date.accessioned2022-04-29T08:35:00Z
dc.date.available2022-04-29T08:35:00Z
dc.date.issued2021-01-01
dc.description.abstractAccurately simulating the properties of bulk water, despite the apparent simplicity of the molecule, is still a challenge. In order to fully understand and reproduce its complex phase diagram, it is necessary to perform simulations at the ab initio level, including quantum mechanical effects both for electrons and nuclei. This comes at a high computational cost, given that the structural and dynamical properties tend to require long timescales and large simulation cells. In this work, we evaluate the errors that density functional theory (DFT)-based simulations routinely incur into due time- and size-scale limitations. These errors are evaluated using neural-network-trained force fields that are accurate at the level of DFT methods. We compare different exchange and correlation potentials for properties of bulk water that require large timescales. We show that structural properties are less dependent on the system size and that dynamical properties such as the diffusion coefficient have a strong dependence on the simulation size and timescale. Our results facilitate comparisons of DFT-based simulation results with experiments and offer a path to discriminate between model and convergence errors in these simulations.en
dc.description.affiliationInstitute of Theoretical Physics São Paulo State University (UNESP) Campus São Paulo
dc.description.affiliationCentro de Ciências Naturais e Humanas Universidade Federal Do Abc
dc.description.affiliationState University of New York at Stonybrook
dc.description.affiliationUnespInstitute of Theoretical Physics São Paulo State University (UNESP) Campus São Paulo
dc.identifierhttp://dx.doi.org/10.1021/acs.jpcb.1c04372
dc.identifier.citationJournal of Physical Chemistry B.
dc.identifier.doi10.1021/acs.jpcb.1c04372
dc.identifier.issn1520-5207
dc.identifier.issn1520-6106
dc.identifier.scopus2-s2.0-85116554866
dc.identifier.urihttp://hdl.handle.net/11449/229662
dc.language.isoeng
dc.relation.ispartofJournal of Physical Chemistry B
dc.sourceScopus
dc.titleUsing Neural Network Force Fields to Ascertain the Quality of Ab Initio Simulations of Liquid Wateren
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-6823-8339[3]
unesp.author.orcid0000-0001-8874-6947[4]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos