Logo do repositório
 

An efficient Hopfield network to solve economic dispatch problems with transmission system representation

dc.contributor.authorda Silva, I. N.
dc.contributor.authorNepomuceno, L.
dc.contributor.authorBastos, T. M.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:13Z
dc.date.available2014-05-20T13:27:13Z
dc.date.issued2004-11-01
dc.description.abstractEconomic dispatch (ED) problems have recently been solved by artificial neural network approaches. Systems based on artificial neural networks have high computational rates due to the use of a massive number of simple processing elements and the high degree of connectivity between these elements. The ability of neural networks to realize some complex non-linear function makes them attractive for system optimization. All ED models solved by neural approaches described in the literature fail to represent the transmission system. Therefore, such procedures may calculate dispatch policies, which do not take into account important active power constraints. Another drawback pointed out in the literature is that some of the neural approaches fail to converge efficiently toward feasible equilibrium points. A modified Hopfield approach designed to solve ED problems with transmission system representation is presented in this paper. The transmission system is represented through linear load flow equations and constraints on active power flows. The internal parameters of such modified Hopfield networks are computed using the valid-subspace technique. These parameters guarantee the network convergence to feasible equilibrium points, which represent the solution for the ED problem. Simulation results and a sensitivity analysis involving IEEE 14-bus test system are presented to illustrate efficiency of the proposed approach. (C) 2004 Elsevier Ltd. All rights reserved.en
dc.description.affiliationUniv Fed São Paulo, UNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUniv Fed São Paulo, UNESP, Dept Elect Engn, BR-17033360 Bauru, SP, Brazil
dc.format.extent733-738
dc.identifierhttp://dx.doi.org/10.1016/j.ijepes.2004.05.007
dc.identifier.citationInternational Journal of Electrical Power & Energy Systems. Oxford: Elsevier B.V., v. 26, n. 9, p. 733-738, 2004.
dc.identifier.doi10.1016/j.ijepes.2004.05.007
dc.identifier.issn0142-0615
dc.identifier.lattes2013445187247691
dc.identifier.urihttp://hdl.handle.net/11449/8895
dc.identifier.wosWOS:000223581600009
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofInternational Journal of Electrical Power & Energy Systems
dc.relation.ispartofjcr3.610
dc.relation.ispartofsjr1,276
dc.rights.accessRightsAcesso restritopt
dc.sourceWeb of Science
dc.subjecteconomic dispatchpt
dc.subjectartificial neural networkspt
dc.subjectHopfield modelpt
dc.titleAn efficient Hopfield network to solve economic dispatch problems with transmission system representationen
dc.typeArtigopt
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
relation.isDepartmentOfPublication4c2e649a-dc0d-49ec-bc7f-f5f46e998cd2
relation.isDepartmentOfPublication.latestForDiscovery4c2e649a-dc0d-49ec-bc7f-f5f46e998cd2
relation.isOrgUnitOfPublication47f5cbd3-e1a4-4967-9c9f-2747e6720d28
relation.isOrgUnitOfPublication.latestForDiscovery47f5cbd3-e1a4-4967-9c9f-2747e6720d28
unesp.author.lattes2013445187247691
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Licença do pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: