Logo do repositório

Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations

dc.contributor.authorBracciali, Cleonice F. [UNESP]
dc.contributor.authorCosta, Glalco S.
dc.contributor.authorPerez, Teresa E.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionUniv Fed Triangulo Mineiro UFTM
dc.contributor.institutionUniv Granada
dc.date.accessioned2022-11-30T13:46:46Z
dc.date.available2022-11-30T13:46:46Z
dc.date.issued2022-09-10
dc.description.abstractWe study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained.en
dc.description.affiliationUniv Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Fed Triangulo Mineiro UFTM, Inst Ciencias Tecnol & Exatas ICTE, Dept Matemat, Uberaba, MG, Brazil
dc.description.affiliationUniv Granada, Fac Ciencias, Inst Matemat IMAG, Granada, Spain
dc.description.affiliationUniv Granada, Fac Ciencias, Dept Matemat Aplicada, Granada, Spain
dc.description.affiliationUnespUniv Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFEDER/Junta de Andalucia
dc.description.sponsorshipMCIN
dc.description.sponsorshipFEDER
dc.description.sponsorshipIMAG-Maria de Maeztu grant
dc.description.sponsorshipIdCAPES: 88887.310463/2018-00
dc.description.sponsorshipIdCAPES: 88887.575407/2020-00
dc.description.sponsorshipIdFEDER/Junta de Andalucia: A-FQM-246-UGR20
dc.description.sponsorshipIdMCIN: PGC2018-094932B-I00
dc.description.sponsorshipIdIMAG-Maria de Maeztu grant: CEX2020-00 1105-M
dc.format.extent21
dc.identifierhttp://dx.doi.org/10.1080/10236198.2022.2119140
dc.identifier.citationJournal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022.
dc.identifier.doi10.1080/10236198.2022.2119140
dc.identifier.issn1023-6198
dc.identifier.urihttp://hdl.handle.net/11449/237854
dc.identifier.wosWOS:000852168300001
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofJournal Of Difference Equations And Applications
dc.sourceWeb of Science
dc.subjectBivariate orthogonal polynomials
dc.subjectFreud orthogonal polynomials
dc.subjectThree term relations
dc.subjectMatrix Painleve: type difference equations
dc.titleTwo variable Freud orthogonal polynomials and matrix Painleve-type difference equationsen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0002-0889-6484[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática - IBILCEpt

Arquivos