Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations
| dc.contributor.author | Bracciali, Cleonice F. [UNESP] | |
| dc.contributor.author | Costa, Glalco S. | |
| dc.contributor.author | Perez, Teresa E. | |
| dc.contributor.institution | Universidade Estadual Paulista (UNESP) | |
| dc.contributor.institution | Univ Fed Triangulo Mineiro UFTM | |
| dc.contributor.institution | Univ Granada | |
| dc.date.accessioned | 2022-11-30T13:46:46Z | |
| dc.date.available | 2022-11-30T13:46:46Z | |
| dc.date.issued | 2022-09-10 | |
| dc.description.abstract | We study bivariate orthogonal polynomials associated with Freud weight functions depending on real parameters. We analyse relations between the matrix coefficients of the three term relations for the orthonormal polynomials as well as the coefficients of the structure relations satisfied by these bivariate semiclassical orthogonal polynomials, also a matrix differential-difference equation for the bivariate orthogonal polynomials is deduced. The extension of the Painleve equation for the coefficients of the three term relations to the bivariate case and a two dimensional version of the Langmuir lattice are obtained. | en |
| dc.description.affiliation | Univ Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
| dc.description.affiliation | Univ Fed Triangulo Mineiro UFTM, Inst Ciencias Tecnol & Exatas ICTE, Dept Matemat, Uberaba, MG, Brazil | |
| dc.description.affiliation | Univ Granada, Fac Ciencias, Inst Matemat IMAG, Granada, Spain | |
| dc.description.affiliation | Univ Granada, Fac Ciencias, Dept Matemat Aplicada, Granada, Spain | |
| dc.description.affiliationUnesp | Univ Estadual Paulista, UNESP, Dept Matemat, IBILCE, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil | |
| dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
| dc.description.sponsorship | FEDER/Junta de Andalucia | |
| dc.description.sponsorship | MCIN | |
| dc.description.sponsorship | FEDER | |
| dc.description.sponsorship | IMAG-Maria de Maeztu grant | |
| dc.description.sponsorshipId | CAPES: 88887.310463/2018-00 | |
| dc.description.sponsorshipId | CAPES: 88887.575407/2020-00 | |
| dc.description.sponsorshipId | FEDER/Junta de Andalucia: A-FQM-246-UGR20 | |
| dc.description.sponsorshipId | MCIN: PGC2018-094932B-I00 | |
| dc.description.sponsorshipId | IMAG-Maria de Maeztu grant: CEX2020-00 1105-M | |
| dc.format.extent | 21 | |
| dc.identifier | http://dx.doi.org/10.1080/10236198.2022.2119140 | |
| dc.identifier.citation | Journal Of Difference Equations And Applications. Abingdon: Taylor & Francis Ltd, 21 p., 2022. | |
| dc.identifier.doi | 10.1080/10236198.2022.2119140 | |
| dc.identifier.issn | 1023-6198 | |
| dc.identifier.uri | http://hdl.handle.net/11449/237854 | |
| dc.identifier.wos | WOS:000852168300001 | |
| dc.language.iso | eng | |
| dc.publisher | Taylor & Francis Ltd | |
| dc.relation.ispartof | Journal Of Difference Equations And Applications | |
| dc.source | Web of Science | |
| dc.subject | Bivariate orthogonal polynomials | |
| dc.subject | Freud orthogonal polynomials | |
| dc.subject | Three term relations | |
| dc.subject | Matrix Painleve: type difference equations | |
| dc.title | Two variable Freud orthogonal polynomials and matrix Painleve-type difference equations | en |
| dc.type | Artigo | |
| dcterms.license | http://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp | |
| dcterms.rightsHolder | Taylor & Francis Ltd | |
| dspace.entity.type | Publication | |
| unesp.author.orcid | 0000-0002-0889-6484[3] | |
| unesp.campus | Universidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Preto | pt |
| unesp.department | Matemática - IBILCE | pt |
