Publicação: Hybrid-permeability model evaluation through concepts of tortuosity and resistance rate: Properties of manufactured hybrid laminate
dc.contributor.author | Monticeli, Francisco Maciel [UNESP] | |
dc.contributor.author | da Silva Monte Vidal, Dielly Cavalcanti [UNESP] | |
dc.contributor.author | Shiino, Marcos Yutaka [UNESP] | |
dc.contributor.author | Voorwald, Herman Jacobus Cornelis [UNESP] | |
dc.contributor.author | Cioffi, Maria Odila Hilário [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.date.accessioned | 2019-10-06T16:27:06Z | |
dc.date.available | 2019-10-06T16:27:06Z | |
dc.date.issued | 2019-06-01 | |
dc.description.abstract | The mechanical properties of composite structures depend on the preform impregnation and a successful impregnation can be achieved using the permeability relation in the case of an infusion process. The objective of this study is to develop an analytical model to predict the permeability K of carbon and glass fabrics through hybrid laminate using different stacking sequence, applying an average-permeability model. Preforms permeabilities were evaluated through tortuosity and void-volume fraction. The model allows the analysis of different stacking sequence combinations (interleaved and in block), measuring the contribution of each material type. As a result, hybrid average-permeability model was validated through experimental permeability tests, dimensionless permeability, and tortuosity results, besides enabling predictions of the flow front behavior with <10% of deviation. Carbon fiber preforms exhibited higher flow resistance, which is explained via tortuosity concept. A combination of carbon/glass preforms presented an increased permeability, which means a synergy that provides higher value of K. In addition, the use of hybrid preforms, especially Hybrid 2 stacking sequence, reduce the injection time and void formation, ensuring composite impregnation quality. POLYM. ENG. SCI., 59:1215–1222 2019. © 2019 Society of Plastics Engineers. | en |
dc.description.affiliation | Department of Materials and Technology Fatigue and Aeronautic Materials Research Group Guaratingueta School of Engineering São Paulo State University (Unesp) | |
dc.description.affiliation | Departamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp) | |
dc.description.affiliationUnesp | Department of Materials and Technology Fatigue and Aeronautic Materials Research Group Guaratingueta School of Engineering São Paulo State University (Unesp) | |
dc.description.affiliationUnesp | Departamento de Engenharia Ambiental Instituto de Ciência e Tecnologia Universidade Estadual Paulista (Unesp) | |
dc.description.sponsorship | Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) | |
dc.description.sponsorship | Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) | |
dc.description.sponsorshipId | FAPESP: 2015/10906-2 | |
dc.description.sponsorshipId | FAPESP: 2015/19967-4 | |
dc.description.sponsorshipId | FAPESP: 2016/07245-7 | |
dc.format.extent | 1215-1222 | |
dc.identifier | http://dx.doi.org/10.1002/pen.25104 | |
dc.identifier.citation | Polymer Engineering and Science, v. 59, n. 6, p. 1215-1222, 2019. | |
dc.identifier.doi | 10.1002/pen.25104 | |
dc.identifier.issn | 1548-2634 | |
dc.identifier.issn | 0032-3888 | |
dc.identifier.lattes | 2160957529151025 | |
dc.identifier.lattes | 6119671014416126 | |
dc.identifier.scopus | 2-s2.0-85064711665 | |
dc.identifier.uri | http://hdl.handle.net/11449/189017 | |
dc.language.iso | eng | |
dc.relation.ispartof | Polymer Engineering and Science | |
dc.rights.accessRights | Acesso restrito | |
dc.source | Scopus | |
dc.title | Hybrid-permeability model evaluation through concepts of tortuosity and resistance rate: Properties of manufactured hybrid laminate | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.author.lattes | 2160957529151025 | |
unesp.author.lattes | 6119671014416126 | |
unesp.author.orcid | 0000-0002-0814-8160[1] | |
unesp.department | Materiais e Tecnologia - FEG | pt |