Logotipo do repositório
 

Publicação:
Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries

dc.contributor.authorXavier, Camila Soares [UNESP]
dc.contributor.authorPaskocimas, Carlos Alberto
dc.contributor.authorMotta, Fabiana Villela Da
dc.contributor.authorAraújo, Vinícius Dantas
dc.contributor.authorAragón, Maria José
dc.contributor.authorTirado, José Luís
dc.contributor.authorLavela, Pedro
dc.contributor.authorLongo, Elson [UNESP]
dc.contributor.authorDelmonte, Mauricio Roberto Bomio
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do Rio Grande do Norte (UFRN)
dc.contributor.institutionUniversidad de Córdoba Laboratorio de Química Inorgánica
dc.date.accessioned2015-02-02T12:39:27Z
dc.date.available2015-02-02T12:39:27Z
dc.date.issued2014-08-01
dc.description.abstractRechargeable solid-state batteries have long been considered an attractive power source for a wide variety of applications, and in particular, lithium-ion batteries are emerging as the technology of choice for portable electronics. One of the main challenges in the design of these batteries is to ensure that the electrodes maintain their integrity over many discharge-recharge cycles. Fe3O4 deserves great attention as one of the most important electrode active materials due to its high theoretical capacity (926 mAhg- 1), low cost, being environmental-friendly and naturally abundance in worldwide. A simple strategy to synthesize magnetite nanoparticles (Fe3O4) by microwave-assisted hydrothermal method in a short processing time without further treatment is reported. The material obtained was tested as anode active material for lithium ions batteries. Impedance spectroscopy revealed that small differences in cell performance on cycling observed between samples cannot be strictly correlated to cell resistance. A high reversible capacity of 768.5 mAhg- 1 at 1C over 50 cycles was demonstrated, suggesting its prospective use as anode material for high power lithium ion batteries.en
dc.description.affiliationUniversidade Estadual Paulista Instituto de Química
dc.description.affiliationUniversidade Federal do Rio Grande do Norte Departamento de Engenharia de Materiais Laboratório de Síntese Química de Materiais
dc.description.affiliationUniversidad de Córdoba Laboratorio de Química Inorgánica
dc.description.affiliationUnespUniversidade Estadual Paulista Instituto de Química
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.format.extent1065-1070
dc.identifierhttp://dx.doi.org/10.1590/1516-1439.264714
dc.identifier.citationMaterials Research. ABM, ABC, ABPol, v. 17, n. 4, p. 1065-1070, 2014.
dc.identifier.doi10.1590/1516-1439.264714
dc.identifier.fileS1516-14392014000400033.pdf
dc.identifier.issn1516-1439
dc.identifier.scieloS1516-14392014000400033
dc.identifier.urihttp://hdl.handle.net/11449/114336
dc.language.isoeng
dc.publisherABM, ABC, ABPol
dc.relation.ispartofMaterials Research
dc.relation.ispartofjcr1.103
dc.relation.ispartofsjr0,398
dc.rights.accessRightsAcesso aberto
dc.sourceSciELO
dc.subjectmagnetiteen
dc.subjectnanoparticlesen
dc.subjectMicrowave hydrothermal (MH)en
dc.subjectLithium ion batteriesen
dc.subjectanode active materialen
dc.titleMicrowave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteriesen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Química, Araraquarapt
unesp.departmentBioquímica e Tecnologia - IQpt

Arquivos

Pacote Original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
S1516-14392014000400033.pdf
Tamanho:
1.79 MB
Formato:
Adobe Portable Document Format