Logotipo do repositório
 

Publicação:
Enhanced near-Infrared Photoresponse from Nanoscale Ag-Au Alloyed Films

dc.contributor.authorKrayer, Lisa J.
dc.contributor.authorPalm, Kevin J.
dc.contributor.authorGong, Chen [UNESP]
dc.contributor.authorTorres, Alberto
dc.contributor.authorVillegas, Cesar E. P. [UNESP]
dc.contributor.authorRocha, Alexandre R.
dc.contributor.authorLeite, Marina S.
dc.contributor.authorMunday, Jeremy N.
dc.contributor.institutionUniversity of Maryland
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidad Privada Del Norte
dc.contributor.institutionUniversity of California
dc.date.accessioned2020-12-12T02:18:40Z
dc.date.available2020-12-12T02:18:40Z
dc.date.issued2020-07-15
dc.description.abstractAlloying of metals provides a vast parameter space for tuning of material, chemical, and mechanical properties, impacting disciplines ranging from photonics and catalysis to aerospace. From an optical point-of-view, pure thin metal films yield enhanced light absorption due to their cavity effects. However, an ideal metal-semiconductor photodetector requires not only high absorption, but also long hot carrier attenuation lengths in order to efficiently collect excited carriers. Here we demonstrate that Ag-Au alloys provide an ideal model system for controlling the optical and electrical responses in nanoscale thin metal films for hot carrier photodetectors with improved performance. While pure Ag and Au have long hot carrier attenuation lengths >20 nm, their optical absorption is insufficient for high efficiency devices. Instead, we find that alloying Ag and Au enhances the absorption by -50% while maintaining attenuation lengths >15 nm, currently limited by grain boundary scattering, although the electron attenuation length of pure Au outperforms pure Ag as well as all of the alloys investigated here. Further, our density functional theory analysis shows that the addition of small amounts of Au to the Ag lattice significantly enhances the hot hole generation rate. Combined, these findings suggest a route to high efficiency hot carrier devices based on metallic alloying with potential applications ranging from photodetectors and sensors to improved catalytic materials.en
dc.description.affiliationDepartment of Electrical and Computer Engineering Institute for Research in Electronics and Applied Physics Department of Physics Department of Materials Science and Engineering University of Maryland
dc.description.affiliationInstituto de Física Teórica Saõ Paulo State University (UNESP)
dc.description.affiliationDepartamento de Ciências Universidad Privada Del Norte
dc.description.affiliationDepartment of Material Science and Engineering Department of Electrical and Computer Engineering University of California
dc.description.affiliationUnespInstituto de Física Teórica Saõ Paulo State University (UNESP)
dc.format.extent1689-1698
dc.identifierhttp://dx.doi.org/10.1021/acsphotonics.0c00140
dc.identifier.citationACS Photonics, v. 7, n. 7, p. 1689-1698, 2020.
dc.identifier.doi10.1021/acsphotonics.0c00140
dc.identifier.issn2330-4022
dc.identifier.scopus2-s2.0-85089272394
dc.identifier.urihttp://hdl.handle.net/11449/200884
dc.language.isoeng
dc.relation.ispartofACS Photonics
dc.sourceScopus
dc.subjectelectron attenuation length
dc.subjecthot carriers
dc.subjectmetal alloys
dc.subjectnear-infrared absorption
dc.subjectphotodetection
dc.subjectSchottky photodiodes
dc.titleEnhanced near-Infrared Photoresponse from Nanoscale Ag-Au Alloyed Filmsen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0001-9133-226X[1]
unesp.author.orcid0000-0003-4066-4584[2]
unesp.author.orcid0000-0003-3302-7675[3]
unesp.author.orcid0000-0003-2675-1331 0000-0003-2675-1331[5]
unesp.author.orcid0000-0001-8874-6947[6]
unesp.author.orcid0000-0003-4888-8195[7]
unesp.author.orcid0000-0002-0881-9876[8]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Física Teórica (IFT), São Paulopt

Arquivos