Logotipo do repositório
 

Publicação:
Multiclass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress)

dc.contributor.authorSilva, Leandro Marcos da [UNESP]
dc.contributor.authorSilveira, Marcos Rogerio [UNESP]
dc.contributor.authorCansian, Adriano Mauro [UNESP]
dc.contributor.authorKobayashi, Hugo Koji
dc.contributor.authorGkoulalasDivanis, A.
dc.contributor.authorMarchetti, M.
dc.contributor.authorAvresky, D. R.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionBrazilian Network Informat Ctr NICBR
dc.date.accessioned2022-04-28T17:30:19Z
dc.date.available2022-04-28T17:30:19Z
dc.date.issued2020-01-01
dc.description.abstractThe Domain Name System (DNS) protocol provides the mapping between hostnames and Internet Protocol addresses and vice versa. However, attackers use the DNS structure to register malicious domains to engage in malicious activities. One way to mitigate these domains is to use blocklists, but there is considerable time in human detection and insertion into lists. Thus, there are works aimed at detecting domains in an automated way applying machine learning techniques. Given this scenario, the present work presents an analysis of blocklists to identify patterns in malicious domains, where it was concluded that Top Level Domains might be associated with the maliciousness of a domain. After that, a system overview for the multiclass classification of malicious domains using passive DNS is proposed. The system has an exclusive character, because it is the first to use a multiclass approach to indicate the threat present in the malicious domain, and yet, it uses XGBoost and techniques to balance the data.en
dc.description.affiliationSao Paulo State Univ UNESP, Sao Paulo, Brazil
dc.description.affiliationBrazilian Network Informat Ctr NICBR, Sao Paulo, Brazil
dc.description.affiliationUnespSao Paulo State Univ UNESP, Sao Paulo, Brazil
dc.description.sponsorshipFundação para o Desenvolvimento da UNESP (FUNDUNESP)
dc.description.sponsorshipIdFUNDUNESP: 2764/2018
dc.format.extent3
dc.identifier.citation2020 Ieee 19th International Symposium On Network Computing And Applications (nca). New York: Ieee, 3 p., 2020.
dc.identifier.issn2643-7910
dc.identifier.urihttp://hdl.handle.net/11449/218875
dc.identifier.wosWOS:000661912700046
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartof2020 Ieee 19th International Symposium On Network Computing And Applications (nca)
dc.sourceWeb of Science
dc.subjectDomain Name System
dc.subjectPassive DNS
dc.subjectMalicious Domain
dc.subjectXGBoost
dc.subjectMulticlass Classification
dc.titleMulticlass Classification of Malicious Domains Using Passive DNS with XGBoost (Work in Progress)en
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentEngenharia Mecânica - FEBpt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos