Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Plant antagonistic facilitation across environmental gradients: a soil-resource ecosystem engineering model

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor – a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy. Antagonistic facilitation emerges in stressful environments where ecosystem engineers' self-benefits from mining resources outweigh the competition with opportunistic neighbors. Among all potential causes of stress considered in the model, the key environmental parameter driving changes in the interaction between plants is the proportion of the resource that becomes readily available for plant consumption in the absence of any mining activity. Our results align with theories of primary succession and the stress gradient hypothesis. However, we find that the total root biomass and its spatial allocation through the root system, often used to measure the sign of the interaction between plants, do not predict facilitation reliably.

Descrição

Palavras-chave

ecosystem engineers, facilitation, primary succession, root competition, soil amelioration, stress gradient hypothesis

Idioma

Inglês

Citação

New Phytologist, v. 244, n. 2, p. 670-682, 2024.

Itens relacionados

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso