Logotipo do repositório
 

Publicação:
Joint Optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources Including CO2 Emissions

dc.contributor.authorde Lima, Tayenne Dias [UNESP]
dc.contributor.authorFranco, John F. [UNESP]
dc.contributor.authorLezama, Fernando
dc.contributor.authorSoares, João
dc.contributor.authorVale, Zita
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionPolitécnico do Porto
dc.date.accessioned2022-04-28T19:44:51Z
dc.date.available2022-04-28T19:44:51Z
dc.date.issued2021-09-01
dc.description.abstractIn the coming years, several transformations in the transport sector are expected, associated with the increase in electric vehicles (EVs). These changes directly impact electrical distribution systems (EDSs), introducing new challenges in their planning and operation. One way to assist in the desired integration of this technology is to allocate EV charging stations (EVCSs). Efforts have been made towards the development of EVCSs, with the ability to recharge the vehicle at a similar time than conventional vehicle filling stations. Besides, EVs can bring environmental benefits by reducing greenhouse gas emissions. However, depending on the energy matrix of the country in which the EVs fleet circulates, there may be indirect emissions of polluting gases. Therefore, the development of this technology must be combined with the growth of renewable generation. Thus, this proposal aims to develop a mathematical model that includes EVs integration in the distribution system. To this end, a mixed-integer linear programming (MILP) model is proposed to solve the allocation problem of EVCSs including renewable energy sources. The model addresses the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. Moreover, an EV charging forecast method is proposed, subject to the uncertainties related to the driver's behavior, the energy required by these vehicles, and the state of charge of the EVs. The proposed model was implemented in the AMPL modelling language and solved via the commercial solver CPLEX. Tests with a 24-node system allow evaluating the proposed method application.en
dc.description.affiliationDepartamento de Engenharia Elétrica Universidade Estadual Paulista, Av. Brasil Sul, 56
dc.description.affiliationEscola de Engenharia de Energia da Universidade Estadual Paulista, Av. dos Barrageiros, 1881
dc.description.affiliationGECA D Politécnico do Porto, R. Dr. António Bernardino de Almeida, 431
dc.description.affiliationPolitécnico do Porto, R. Dr. António Bernardino de Almeida, 431
dc.description.affiliationUnespDepartamento de Engenharia Elétrica Universidade Estadual Paulista, Av. Brasil Sul, 56
dc.description.affiliationUnespEscola de Engenharia de Energia da Universidade Estadual Paulista, Av. dos Barrageiros, 1881
dc.identifierhttp://dx.doi.org/10.1186/s42162-021-00157-5
dc.identifier.citationEnergy Informatics, v. 4.
dc.identifier.doi10.1186/s42162-021-00157-5
dc.identifier.issn2520-8942
dc.identifier.scopus2-s2.0-85115639995
dc.identifier.urihttp://hdl.handle.net/11449/222474
dc.language.isoeng
dc.relation.ispartofEnergy Informatics
dc.sourceScopus
dc.subjectAllocation of electric vehicle charging stations
dc.subjectElectric vehicle charging stations
dc.subjectEV charging forecast method
dc.subjectRenewable energy sources
dc.titleJoint Optimal Allocation of Electric Vehicle Charging Stations and Renewable Energy Sources Including CO2 Emissionsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Rosanapt

Arquivos