Logotipo do repositório
 

Publicação:
Numerical modeling of flow stress and grain evolution of an Mg AZ31B alloy based on hot compression tests

dc.contributor.authorGiorjao, R. A.R.
dc.contributor.authorMonlevade, E. F.
dc.contributor.authorAvila, J. A. [UNESP]
dc.contributor.authorTschiptschin, A. P.
dc.contributor.institutionThe Ohio State University
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:08:22Z
dc.date.available2020-12-12T01:08:22Z
dc.date.issued2020-01-01
dc.description.abstractMagnesium alloys offer a wide range of applications in modern lightweight structures, although the correct forming parameters need to be found to reach a good combination of fine microstructure and the required mechanical properties. Several discrete and statistical methods have been proposed to simulate the dynamic recrystallization process and adopted to study microstructural evolution. However, the materials parameters necessary to develop these models are not widely available. Hence, industrial evaluation of these parameters is complex, unpractical for several types of material and time consuming for daily industrial applications. In that way, the thermomechanical behavior and grain size evolution modeling of the AZ31 alloy are proposed using isothermal compression data. Parameters to calculate coupled stress–strain–temperature parameters, dynamic recrystallization, volume fraction and grain size were obtained from the stress–strain curves. Then, the data were input in Deform-3D software to simulate the hot deformation process and verify with experimental data the consistency of the values obtained. Measured grains size agreed with the conducted modeling, showing the reliability of strain–stress and grain size data on predicting dynamic recrystallization phenomena.en
dc.description.affiliationWelding Engineering The Ohio State University, 1248 Arthur E Adams Dr 43221
dc.description.affiliationMetallurgical and Materials Engineering Department University of São Paulo, Av. Prof. Mello Moraes 2463
dc.description.affiliationUNESP – São Paulo State University, Campus of São João da Boa Vista, Av. Profª Isette Corrêa Fontão, 505, Jardim das Flores
dc.description.affiliationUnespUNESP – São Paulo State University, Campus of São João da Boa Vista, Av. Profª Isette Corrêa Fontão, 505, Jardim das Flores
dc.identifierhttp://dx.doi.org/10.1007/s40430-019-2146-4
dc.identifier.citationJournal of the Brazilian Society of Mechanical Sciences and Engineering, v. 42, n. 1, 2020.
dc.identifier.doi10.1007/s40430-019-2146-4
dc.identifier.issn1806-3691
dc.identifier.issn1678-5878
dc.identifier.scopus2-s2.0-85076464539
dc.identifier.urihttp://hdl.handle.net/11449/198276
dc.language.isoeng
dc.relation.ispartofJournal of the Brazilian Society of Mechanical Sciences and Engineering
dc.sourceScopus
dc.subjectAZ31B
dc.subjectDynamic recrystallization
dc.subjectFinite element modeling
dc.subjectGleeble simulation
dc.subjectIsothermal compression
dc.titleNumerical modeling of flow stress and grain evolution of an Mg AZ31B alloy based on hot compression testsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.author.orcid0000-0002-5893-4725[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, São João da Boa Vistapt

Arquivos