Bayesian calibration for Lamb wave propagation on a composite plate using a machine learning surrogate model
Carregando...
Arquivos
Fontes externas
Fontes externas
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Arquivos
Fontes externas
Fontes externas
Resumo
This paper presents a new framework for stochastic updating of a finite element model for a composite plate, considering the influence of temperature on Lamb wave propagation. The framework involves deterministic updating to optimize mechanical properties and stochastic updating to derive probability density functions for key parameters. It utilizes sensitivity analysis and Bayesian inference with Markov-Chain Monte Carlo simulations and the Metropolis–Hastings sampling algorithm. This paper proposes a machine learning surrogate model based on artificial neural networks to improve computational efficiency. This surrogate modeling approach allows parallelized Monte Carlo simulations, reducing updating time significantly without compromising the accuracy of the resulting probability density functions for model parameters. These advancements show a promising way to enhance composite plate modeling and Lamb wave propagation studies, providing a more efficient and accurate approach to verify and validate finite element models with potential applications in engineering simulations.
Descrição
Palavras-chave
Bayesian calibration, Lamb wave, Operational and environmental variations, Sobol indices, Surrogate model
Idioma
Inglês
Citação
Mechanical Systems and Signal Processing, v. 208.





