Logo do repositório

Bayesian calibration for Lamb wave propagation on a composite plate using a machine learning surrogate model

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

This paper presents a new framework for stochastic updating of a finite element model for a composite plate, considering the influence of temperature on Lamb wave propagation. The framework involves deterministic updating to optimize mechanical properties and stochastic updating to derive probability density functions for key parameters. It utilizes sensitivity analysis and Bayesian inference with Markov-Chain Monte Carlo simulations and the Metropolis–Hastings sampling algorithm. This paper proposes a machine learning surrogate model based on artificial neural networks to improve computational efficiency. This surrogate modeling approach allows parallelized Monte Carlo simulations, reducing updating time significantly without compromising the accuracy of the resulting probability density functions for model parameters. These advancements show a promising way to enhance composite plate modeling and Lamb wave propagation studies, providing a more efficient and accurate approach to verify and validate finite element models with potential applications in engineering simulations.

Descrição

Palavras-chave

Bayesian calibration, Lamb wave, Operational and environmental variations, Sobol indices, Surrogate model

Idioma

Inglês

Citação

Mechanical Systems and Signal Processing, v. 208.

Itens relacionados

Unidades

Item type:Unidade,
Faculdade de Engenharia
FEIS
Campus: Ilha Solteira


Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso