Logotipo do repositório
 

Publicação:
Design of experiments and focused grid search for neural network parameter optimization

dc.contributor.authorPontes, F. J. [UNESP]
dc.contributor.authorAmorim, G. F.
dc.contributor.authorBalestrassi, P. P.
dc.contributor.authorPaiva, A. P.
dc.contributor.authorFerreira, J. R.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral
dc.contributor.institutionUniversity of Tennessee - Knoxville Through the Science Without Borders Program
dc.date.accessioned2018-12-11T16:40:52Z
dc.date.available2018-12-11T16:40:52Z
dc.date.issued2016-04-19
dc.description.abstractThe present work offers some contributions to the area of surface roughness modeling by Artificial Neural Networks (ANNs) in machining processes. It proposes a method for an optimized project of a Multi-Layer Perceptron (MLP) network architecture applied for the prediction of Average Surface Roughness (Ra). The tuning method is expressed in the format of an algorithm employing two techniques from Design of Experiments (DOE) methodology: Full factorials and Evolutionary Operations (EVOP). Datasets retrieved from literature are employed to form training and test data sets for the ANN. The proposed tuning method leads to significant reduction of roughness prediction errors in machining operations in comparison to techniques currently used. It constitutes an effective option for the systematic design models based on ANN for prediction of surface roughness, filling the gap reported in the literature on this subject.en
dc.description.affiliationUNESP (Universidade Estadual Paulista)-Avenida Ariberto Pereira da Cunha, no. 333, Pedregulho
dc.description.affiliationInstitute of Industrial Engineering and Management UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho
dc.description.affiliationUniversity of Tennessee - Knoxville Through the Science Without Borders Program
dc.description.affiliationInstitute of Mechanical Engineering UNIFEI (Universidade Federal de Itajubá)-Rua Dr. Pereira Cabral, no. 1303, Pinheirinho
dc.description.affiliationUnespUNESP (Universidade Estadual Paulista)-Avenida Ariberto Pereira da Cunha, no. 333, Pedregulho
dc.format.extent22-34
dc.identifierhttp://dx.doi.org/10.1016/j.neucom.2015.12.061
dc.identifier.citationNeurocomputing, v. 186, p. 22-34.
dc.identifier.doi10.1016/j.neucom.2015.12.061
dc.identifier.issn1872-8286
dc.identifier.issn0925-2312
dc.identifier.scopus2-s2.0-84956634384
dc.identifier.urihttp://hdl.handle.net/11449/168342
dc.language.isoeng
dc.relation.ispartofNeurocomputing
dc.relation.ispartofsjr1,073
dc.rights.accessRightsAcesso restritopt
dc.sourceScopus
dc.subjectArtificial Neural Network
dc.subjectDesign of Experiment
dc.subjectFocused Grid Search
dc.subjectMachining
dc.subjectTuning
dc.titleDesign of experiments and focused grid search for neural network parameter optimizationen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos