Logotipo do repositório
 

Publicação:
Brewing process optimization by artificial neural network and evolutionary algorithm approach

dc.contributor.authorTakahashi, Maria Beatriz [UNESP]
dc.contributor.authorCoelho de Oliveira, Henrique [UNESP]
dc.contributor.authorFernández Núñez, Eutimio Gustavo
dc.contributor.authorRocha, José Celso [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade de São Paulo (USP)
dc.date.accessioned2019-10-06T16:36:33Z
dc.date.available2019-10-06T16:36:33Z
dc.date.issued2019-01-01
dc.description.abstractThe beer quality can be modulated from changes in their ingredient proportions, as well as in operating parameters. The crossed experimental designs and the multiple optimizations based on desirability functions have demonstrated to be effective methodologies in the unit operation polynomial modeling and optimization of bioprocess, respectively. However, artificial intelligence techniques have been used as an alternative to this modeling in bioprocess. Therefore, this study aimed to implement a software combining artificial neural network (ANN) and differential evolution to optimize the topology of an ANN to model the Ale beer production and to use the optimized ANN in ingredients and operation parameters choice that ensure a beer with high acceptance rate, by the genetic algorithm technique for multiple-objective function. This approach allowed to find ANN models which fitted the process with correlation coefficients higher than 0.85 and high satisfaction level of beer desirable quality attributes (global desirability value = 0.78). Practical Applications: This manuscript could be useful for bioprocess professionals involved in the development of the brewing process and artificial intelligence applications. The approach applied in this work allows for modeling and optimization of brewing process using a combination of crossed experimental design, artificial neural networks, and evolutionary algorithms with relatively low experimental efforts. At the same time, the quality attributes of the beer are better controlled.en
dc.description.affiliationDepartamento de Ciências Biológicas Universidade Estadual Paulista-UNESP/Assis
dc.description.affiliationCentro de Ciências Naturais e Humanas (CCNH) Universidade Federal do ABC
dc.description.affiliationEscola de Artes Ciências e Humanidades (EACH) Universidade de São Paulo
dc.description.affiliationUnespDepartamento de Ciências Biológicas Universidade Estadual Paulista-UNESP/Assis
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: FAPESP 2016/19004-4
dc.identifierhttp://dx.doi.org/10.1111/jfpe.13103
dc.identifier.citationJournal of Food Process Engineering, v. 42, n. 5, 2019.
dc.identifier.doi10.1111/jfpe.13103
dc.identifier.issn1745-4530
dc.identifier.issn0145-8876
dc.identifier.scopus2-s2.0-85067668741
dc.identifier.urihttp://hdl.handle.net/11449/189309
dc.language.isoeng
dc.relation.ispartofJournal of Food Process Engineering
dc.rights.accessRightsAcesso restrito
dc.sourceScopus
dc.titleBrewing process optimization by artificial neural network and evolutionary algorithm approachen
dc.typeArtigo
dspace.entity.typePublication
unesp.author.orcid0000-0002-2800-392X[3]
unesp.departmentCiências Biológicas - FCLASpt

Arquivos