Publicação: A Gradient-Based Approach for Solving the Stochastic Optimal Power Flow Problem with Wind Power Generation
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Tipo
Artigo
Direito de acesso
Resumo
Although wind power generation improves decarbonization of the electricity sector, its increasing penetration poses new challenges for power systems planning, operation and control. In this paper, we propose a solution approach for Stochastic Optimal Power Flow (SOPF) models under uncertainty in wind power generation. Two complicating issues are handled: i) difficulties imposed by probability density functions used to formulate wind power costs and their derivatives; ii) the non-differentiability of the cost function for thermal units. Due to such issues, SOPF models cannot be solved by gradient-based approaches and have been solved by meta-heuristics only. We obtain exact analytical expressions for the first and second order derivatives of wind power costs and propose a technique for handling non-differentiability in thermal costs. The equivalent SOPF model that results from such recasting is a differentiable NLP problem which can be solved by efficient gradient-based algorithms. Finally, we propose a modified log-barrier primal-dual interior/exterior-point method for solving the equivalent SOPF model which, differently from meta-heuristic approaches, is able to calculate important dual variables such as energy prices. Our approach, which is applied to the IEEE 30-, 57- 118- and 300-bus systems, strongly outperforms a meta-heuristic approach in terms of computation times and optimality.
Descrição
Palavras-chave
Interior/exterior-point methods, Stochastic optimal power flow, System reserve costs, Wind power costs, Wind power generation dispatch
Idioma
Inglês
Como citar
Electric Power Systems Research, v. 209.