Logotipo do repositório
 

Publicação:
Sputtered crystalline TiO2 film drives improved surface properties of titanium-based biomedical implants

dc.contributor.authorPantaroto, Heloisa Navarro
dc.contributor.authorCordeiro, Jairo Matozinho
dc.contributor.authorPereira, Lucas Toniolo
dc.contributor.authorde Almeida, Amanda Bandeira
dc.contributor.authorNociti Junior, Francisco Humberto
dc.contributor.authorRangel, Elidiane Cipriano [UNESP]
dc.contributor.authorAzevedo Neto, Nilton Francelosi [UNESP]
dc.contributor.authorda Silva, Jose Humberto Dias [UNESP]
dc.contributor.authorBarão, Valentim Adelino Ricardo
dc.contributor.institutionUniversidade Estadual de Campinas (UNICAMP)
dc.contributor.institutionTribocorrosion and Nanomedicine (IBTN)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T11:06:02Z
dc.date.available2021-06-25T11:06:02Z
dc.date.issued2021-02-01
dc.description.abstractDifferent crystalline phases in sputtered TiO2 films were tailored to determine their surface and electrochemical properties, protein adsorption and apatite layer formation on titanium-based implant material. Deposition conditions of two TiO2 crystalline phases (anatase and rutile) were established and then grown on commercially pure titanium (cpTi) by magnetron sputtering to obtain the following groups: A-TiO2 (anatase), M-TiO2 (anatase and rutile mixture), R-TiO2 (rutile). Non-treated commercially pure titanium (cpTi) was used as a control. Surfaces characterization included: chemical composition, topography, crystalline phase and surface free energy (SFE). Electrochemical tests were conducted using simulated body fluid (SBF). Albumin adsorption was measured by bicinchoninic acid method. Hydroxyapatite (HA) precipitation was evaluated after 28 days of immersion in SBF. MC3T3-E1 cell adhesion, morphology and spreading onto the experimental surfaces were evaluated by scanning electron microscopy. Sputtering treatment modified cpTi topography by increasing its surface roughness. CpTi and M-TiO2 groups presented the greatest SFE. In general, TiO2 films displayed improved electrochemical behavior compared to cpTi, with M-TiO2 featuring the highest polarization resistance. Rutile phase exhibited a greater influence on decreasing the current density and corrosion rate, while the presence of a bi-phasic polycrystalline condition displayed a more stable passive behavior. M-TiO2 featured increased albumin adsorption. HA morphology was dependent on the crystalline phase, being more evident in the bi-phasic group. Furthermore, M-TiO2 displayed normal cell adhesion and morphology. The combination of anatase and rutile structures to generate TiO2 films is a promising strategy to improve biomedical implants properties including greater corrosion protection, higher protein adsorption, bioactivity and non-cytotoxicity effect.en
dc.description.affiliationUniversity of Campinas (UNICAMP) Piracicaba Dental School Department of Prosthodontics and Periodontics, Av. Limeira, 901
dc.description.affiliationTribocorrosion and Nanomedicine (IBTN)
dc.description.affiliationSão Paulo State University (UNESP) Institute of Science and Technology, Av. Três de Março, 511
dc.description.affiliationSão Paulo State University (UNESP) Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01
dc.description.affiliationUnespSão Paulo State University (UNESP) Institute of Science and Technology, Av. Três de Março, 511
dc.description.affiliationUnespSão Paulo State University (UNESP) Department of Physics, Av. Eng. Luís Edmundo C. Coube, 14-01
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdCAPES: 001
dc.description.sponsorshipIdCNPq: 136602/2017-7
dc.description.sponsorshipIdFAPESP: 2015/17055-8
dc.description.sponsorshipIdFAPESP: 2016/11470-6
dc.description.sponsorshipIdCNPq: 304853/2018-6
dc.identifierhttp://dx.doi.org/10.1016/j.msec.2020.111638
dc.identifier.citationMaterials Science and Engineering C, v. 119.
dc.identifier.doi10.1016/j.msec.2020.111638
dc.identifier.issn1873-0191
dc.identifier.issn0928-4931
dc.identifier.scopus2-s2.0-85094185640
dc.identifier.urihttp://hdl.handle.net/11449/208084
dc.language.isoeng
dc.relation.ispartofMaterials Science and Engineering C
dc.sourceScopus
dc.subjectBlood proteins
dc.subjectCorrosion
dc.subjectDental implants
dc.subjectHydroxyapatites
dc.subjectMagnetron sputtering
dc.subjectTitanium
dc.titleSputtered crystalline TiO2 film drives improved surface properties of titanium-based biomedical implantsen
dc.typeArtigo
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Ciência e Tecnologia, Sorocabapt
unesp.departmentEngenharia de Controle e Automação - ICTSpt

Arquivos