Logotipo do repositório
 

Publicação:
Design and analysis of an efficient neural network model for solving nonlinear optimization problems

dc.contributor.authorDa Silva, I. N.
dc.contributor.authorDo Amaral, W. C.
dc.contributor.authorDe Arruda, L. V.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2014-05-20T13:27:13Z
dc.date.available2014-05-20T13:27:13Z
dc.date.issued2005-10-20
dc.description.abstractThis paper presents an efficient approach based on a recurrent neural network for solving constrained nonlinear optimization. More specifically, a modified Hopfield network is developed, and its internal parameters are computed using the valid-subspace technique. These parameters guarantee the convergence of the network to the equilibrium points that represent an optimal feasible solution. The main advantage of the developed network is that it handles optimization and constraint terms in different stages with no interference from each other. Moreover, the proposed approach does not require specification for penalty and weighting parameters for its initialization. A study of the modified Hopfield model is also developed to analyse its stability and convergence. Simulation results are provided to demonstrate the performance of the proposed neural network.en
dc.description.affiliationUNESP, São Paulo State Univ, Dept Elect Engn CP 473, BR-17033360 Bauru, SP, Brazil
dc.description.affiliationUnespUNESP, São Paulo State Univ, Dept Elect Engn CP 473, BR-17033360 Bauru, SP, Brazil
dc.format.extent833-843
dc.identifierhttp://dx.doi.org/10.1080/00207720500282359
dc.identifier.citationInternational Journal of Systems Science. Abingdon: Taylor & Francis Ltd, v. 36, n. 13, p. 833-843, 2005.
dc.identifier.doi10.1080/00207720500282359
dc.identifier.issn0020-7721
dc.identifier.urihttp://hdl.handle.net/11449/8900
dc.identifier.wosWOS:000233776700006
dc.language.isoeng
dc.publisherTaylor & Francis Ltd
dc.relation.ispartofInternational Journal of Systems Science
dc.relation.ispartofjcr2.185
dc.relation.ispartofsjr0,763
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectconstrained optimization problemspt
dc.subjectrecurrent neural networkspt
dc.subjectHopfield networkspt
dc.subjectnonlinear programmingpt
dc.titleDesign and analysis of an efficient neural network model for solving nonlinear optimization problemsen
dc.typeArtigo
dcterms.licensehttp://journalauthors.tandf.co.uk/permissions/reusingOwnWork.asp
dcterms.rightsHolderTaylor & Francis Ltd
dspace.entity.typePublication
unesp.author.orcid0000-0002-5704-8131[3]
unesp.author.orcid0000-0002-1296-5454[1]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos

Licença do Pacote

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
license.txt
Tamanho:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descrição: