Logotipo do repositório
 

Publicação:
Analysis of Features for Breast Cancer Recognition in Different Magnifications of Histopathological Images

dc.contributor.authorCarvalho, Rafael H. de O.
dc.contributor.authorMartins, Alessandro S.
dc.contributor.authorNeves, Leandro A. [UNESP]
dc.contributor.authorNascimento, Marcelo Z. do
dc.contributor.authorPaiva, A. C.
dc.contributor.authorConci, A.
dc.contributor.authorBraz, G.
dc.contributor.authorAlmeida, JDS
dc.contributor.authorFernandes, LAF
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionFed Inst Triangulo Mineiro
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2021-06-25T12:36:51Z
dc.date.available2021-06-25T12:36:51Z
dc.date.issued2020-01-01
dc.description.abstractBreast cancer is one of the most common diseases in women in the world. There are various imaging techniques employed in the diagnosis. The histological image analysis supported by computational systems has proved to be quite effective in diagnosing the disease. In this paper, we present an approach to quantify and classify tissue samples of the breast based on features extracted from the intensity histogram, co-occurrence matrix and the Shannon, Renyi, Tsallis and Kapoor entropies. The attribute set was employed to obtain the feature vectors which were evaluated as inputs to the random forest and sequential minimal optimization algorithms with the 10-fold cross-validation technique. In this study, we investigated the proposed approach with images obtained in four levels of magnification of the publicly available Breast Cancer Histopathological Database. In the feature selection stage, we investigated the correlation-Based feature selection, ReliefF, information gain, gain ratio, one-R and symmetrical uncertainty algorithms for evaluating the performance of the proposed approach. The proposed approach achieved significant results of AUC and accuracy for all cases analyzed. The proposed approach obtained 0.997 for AUC and 97.6% for the accuracy metric. These results are considered relevant and this approach is useful as an automated protocol for the diagnosis of breast histological tissue.en
dc.description.affiliationUniv Fed Uberlandia, Fac Comp Sci, Uberlandia, MG, Brazil
dc.description.affiliationFed Inst Triangulo Mineiro, Ituiutaba, Brazil
dc.description.affiliationSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, Brazil
dc.description.affiliationUnespSao Paulo State Univ, Dept Comp Sci & Stat, Sao Jose Do Rio Preto, Brazil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCNPq: 427114/2016-0
dc.description.sponsorshipIdCNPq: 304848/2018-2
dc.description.sponsorshipIdCNPq: 430965/20184
dc.description.sponsorshipIdCNPq: 313365/2018-0
dc.description.sponsorshipIdFAPEMIG: APQ-00578-18
dc.format.extent39-44
dc.identifier.citationProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition. New York: Ieee, p. 39-44, 2020.
dc.identifier.issn2157-8672
dc.identifier.urihttp://hdl.handle.net/11449/210016
dc.identifier.wosWOS:000615731300009
dc.language.isoeng
dc.publisherIeee
dc.relation.ispartofProceedings Of The 2020 International Conference On Systems, Signals And Image Processing (iwssip), 27th Edition
dc.sourceWeb of Science
dc.subjectBreast cancer
dc.subjectEntropy
dc.subjectCAD
dc.subjectHistological Image
dc.subjectFeature Extraction
dc.titleAnalysis of Features for Breast Cancer Recognition in Different Magnifications of Histopathological Imagesen
dc.typeTrabalho apresentado em evento
dcterms.licensehttp://www.ieee.org/publications_standards/publications/rights/rights_policies.html
dcterms.rightsHolderIeee
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos