Logotipo do repositório
 

Publicação:
Binary Bat Algorithm for Feature Selection

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Capítulo de livro

Direito de acesso

Acesso restrito

Resumo

Feature selection aims to find the most important information to save computational efforts and data storage. We formulated this task as a combinatorial optimization problem since the exponential growth of possible solutions makes an exhaustive search infeasible. In this work, we propose a new nature-inspired feature selection technique based on bats behavior, namely, binary bat algorithm The wrapper approach combines the power of exploration of the bats together with the speed of the optimum-path forest classifier to find a better data representation. Experiments in public datasets have shown that the proposed technique can indeed improve the effectiveness of the optimum-path forest and outperform some well-known swarm-based techniques. © 2013 Copyright © 2013 Elsevier Inc. All rights reserved.

Descrição

Palavras-chave

Bat algorithm, Feature selection, Metaheuristic algorithms, Optimum-path forest classifier, Pattern classification

Idioma

Inglês

Como citar

Swarm Intelligence and Bio-Inspired Computation, p. 225-237.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação