Publicação: Topography of funneled landscapes determines the thermodynamics and kinetics of protein folding
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Natl Acad Sciences
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
The energy landscape approach has played a fundamental role in advancing our understanding of protein folding. Here, we quantify protein folding energy landscapes by exploring the underlying density of states. We identify three quantities essential for characterizing landscape topography: the stabilizing energy gap between the native and nonnative ensembles delta E, the energetic roughness Delta E, and the scale of landscape measured by the entropy S. We show that the dimensionless ratio between the gap, roughness, and entropy of the system Lambda = delta E/(Delta E root 2S) accurately predicts the thermodynamics, as well as the kinetics of folding. Large Lambda implies that the energy gap (or landscape slope towards the native state) is dominant, leading to more funneled landscapes. We investigate the role of topological and energetic roughness for proteins of different sizes and for proteins of the same size, but with different structural topologies. The landscape topography ratio Lambda is shown to be monotonically correlated with the thermodynamic stability against trapping, as characterized by the ratio of folding temperature versus trapping temperature. Furthermore, Lambda also monotonically correlates with the folding kinetic rates. These results provide the quantitative bridge between the landscape topography and experimental folding measurements.
Descrição
Palavras-chave
energy landscape theory, biomolecular dynamics
Idioma
Inglês
Como citar
Proceedings of The National Academy of Sciences of The United States of America. Washington: Natl Acad Sciences, v. 109, n. 39, p. 15763-15768, 2012.