Logotipo do repositório
 

Publicação:
Study of modified area of polymer samples exposed to a he atmospheric pressure plasma jet using different treatment conditions

dc.contributor.authorNishime, Thalita M.C. [UNESP]
dc.contributor.authorWagner, Robert
dc.contributor.authorKostov, Konstantin G. [UNESP]
dc.contributor.institutionLeibniz Institute for Plasma Science and Technology (INP)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2020-12-12T01:24:36Z
dc.date.available2020-12-12T01:24:36Z
dc.date.issued2020-05-01
dc.description.abstractIn the last decade atmospheric pressure plasma jets (APPJs) have been routinely employed for surface processing of polymers due to their capability of generating very reactive chemistry at near-ambient temperature conditions. Usually, the plasma jet modification effect spans over a limited area (typically a few cm2), therefore, for industrial applications, where treatment of large and irregular surfaces is needed, jet and/or sample manipulations are required. More specifically, for treating hollow objects, like pipes and containers, the plasma jet must be introduced inside of them. In this case, a normal jet incidence to treated surface is difficult if not impossible to maintain. In this paper, a plasma jet produced at the end of a long flexible plastic tube was used to treat polyethylene terephthalate (PET) samples with different incidence angles and using different process parameters. Decreasing the angle formed between the plasma plume and the substrate leads to increase in the modified area as detected by surface wettability analysis. The same trend was confirmed by the distribution of reactive oxygen species (ROS), expanding on starch-iodine-agar plates, where a greater area was covered when the APPJ was tilted. Additionally, UV-VUV irradiation profiles obtained from the plasma jet spreading on the surface confirms such behavior.en
dc.description.affiliationLeibniz Institute for Plasma Science and Technology (INP)
dc.description.affiliationFaculty of Engineering (FEG)-São Paulo State University (UNESP)
dc.description.affiliationUnespFaculty of Engineering (FEG)-São Paulo State University (UNESP)
dc.identifierhttp://dx.doi.org/10.3390/POLYM12051028
dc.identifier.citationPolymers, v. 12, n. 5, 2020.
dc.identifier.doi10.3390/POLYM12051028
dc.identifier.issn2073-4360
dc.identifier.scopus2-s2.0-85085392717
dc.identifier.urihttp://hdl.handle.net/11449/198885
dc.language.isoeng
dc.relation.ispartofPolymers
dc.sourceScopus
dc.subjectPET
dc.subjectPlasma jet
dc.subjectPolymer
dc.subjectROS distribution
dc.subjectTilted application
dc.subjectUV
dc.subjectVUV
dc.titleStudy of modified area of polymer samples exposed to a he atmospheric pressure plasma jet using different treatment conditionsen
dc.typeArtigopt
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia e Ciências, Guaratinguetápt

Arquivos