Logotipo do repositório
 

Publicação:
Identification of the level of contamination and degradation of oil by artificial neural networks

dc.contributor.authorda Silva, Ivan N. [UNESP]
dc.contributor.authorde Souza, Andre N. [UNESP]
dc.contributor.authorHossri, Jose H. C.
dc.contributor.authorZago, Maria G.
dc.contributor.institutionUniversidade Estadual Paulista (UNESP)
dc.contributor.institutionMobile Transformer Oil Regeneration System-ECOIL
dc.contributor.institutionTransformers Zago
dc.date.accessioned2022-04-28T19:54:57Z
dc.date.available2022-04-28T19:54:57Z
dc.date.issued2000-01-01
dc.description.abstractThis work presents the development of a new methodology through artificial neural networks to evaluate the level of contamination of the mineral oil used in transformers. This approach also concentrates on estimating the relative aging degree of transformers in relation to the main parameters that represent the degradation of the paper and insulating mineral oil. The results obtained in the simulations proved that the developed technique can be used as an alternative tool to become more suitable planning of the maintenance, allowing the decrease of costs involved in these operations.en
dc.description.affiliationUniv of Sao Paulo-UNESP Department of Electrical Engineering, CP 473, CEP 17033-360, Bauru
dc.description.affiliationMobile Transformer Oil Regeneration System-ECOIL Department of Electrical Engineering, CP 473, CEP 17033-360, Bauru
dc.description.affiliationTransformers Zago Department of Electrical Engineering, CP 473, CEP 17033-360, Bauru
dc.description.affiliationUnespUniv of Sao Paulo-UNESP Department of Electrical Engineering, CP 473, CEP 17033-360, Bauru
dc.format.extent275-279
dc.identifierhttp://dx.doi.org/10.1109/ELINSL.2000.845506
dc.identifier.citationConference Record of IEEE International Symposium on Electrical Insulation, p. 275-279.
dc.identifier.doi10.1109/ELINSL.2000.845506
dc.identifier.issn0164-2006
dc.identifier.scopus2-s2.0-0033706660
dc.identifier.urihttp://hdl.handle.net/11449/224152
dc.language.isoeng
dc.relation.ispartofConference Record of IEEE International Symposium on Electrical Insulation
dc.sourceScopus
dc.titleIdentification of the level of contamination and degradation of oil by artificial neural networksen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos