Logo do repositório

Integrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systems

dc.contributor.authorBíscaro, A. A.P.
dc.contributor.authorPereira, R. A.F. [UNESP]
dc.contributor.authorKezunovic, M.
dc.contributor.authorMantovani, J. R.S. [UNESP]
dc.contributor.institutionUniversidade Do Estado de Mato Grosso - UNEMAT
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionTexas AandM University
dc.date.accessioned2018-12-11T17:02:23Z
dc.date.available2018-12-11T17:02:23Z
dc.date.issued2016-04-01
dc.description.abstractThis paper presents a methodology for automated disturbance analysis and fault location on electric power distribution systems using a combination of modern techniques for network analysis, signal processing, and intelligent systems. New algorithms to detect, classify, and locate power-quality disturbances are developed. The continuous process of detecting these disturbances is accomplished through statistical analysis and multilevel signal analysis in the wavelet domain. The behavioral indices of the current and voltage signals are extracted by employing the discrete wavelet transform, multiresolution analysis, and the concept of signal energy. These indices are used by a number of independent Fuzzy-ARTMAP neural networks, which aim to classify the fault type and the power-quality events. The fault location is performed after the classification process. A real life three-phase distribution system with 134 nodes - 13.8 kV and 7.065 MVA - was used to test the proposed algorithms, providing satisfactory results, attesting that the proposed algorithms are efficient, fast, and, above all, intelligent.en
dc.description.affiliationUniversidade Do Estado de Mato Grosso - UNEMAT Departamento de Engenharia Elétrica
dc.description.affiliationFaculdade de Engenharia de Ilha Solteira UNESP - Univ. Estadual Paulista Departamento de Engenharia Elétrica
dc.description.affiliationDepartment of Electrical and Computer Engineering Texas AandM University
dc.description.affiliationUnespFaculdade de Engenharia de Ilha Solteira UNESP - Univ. Estadual Paulista Departamento de Engenharia Elétrica
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipIdFAPESP: 13/23590-8
dc.format.extent428-436
dc.identifierhttp://dx.doi.org/10.1109/TPWRD.2015.2464098
dc.identifier.citationIEEE Transactions on Power Delivery, v. 31, n. 2, p. 428-436, 2016.
dc.identifier.doi10.1109/TPWRD.2015.2464098
dc.identifier.file2-s2.0-84963784959.pdf
dc.identifier.issn0885-8977
dc.identifier.scopus2-s2.0-84963784959
dc.identifier.urihttp://hdl.handle.net/11449/172837
dc.language.isoeng
dc.relation.ispartofIEEE Transactions on Power Delivery
dc.relation.ispartofsjr1,814
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectFault location
dc.subjectneural networks
dc.subjectpattern classification
dc.subjectpower distribution
dc.subjectpower quality (PQ)
dc.subjectwavelet transforms
dc.titleIntegrated Fault Location and Power-Quality Analysis in Electric Power Distribution Systemsen
dc.typeArtigo
dspace.entity.typePublication
unesp.departmentEngenharia Elétrica - FEISpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-84963784959.pdf
Tamanho:
1.86 MB
Formato:
Adobe Portable Document Format
Descrição: