Logotipo do repositório
 

Publicação:
A Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formula

dc.contributor.authorCastillo, K. [UNESP]
dc.contributor.authorCosta, M. S.
dc.contributor.authorRanga, A. Sri [UNESP]
dc.contributor.authorVeronese, D. O.
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Federal do Triângulo Mineiro (UFTM)
dc.date.accessioned2014-12-03T13:11:09Z
dc.date.available2014-12-03T13:11:09Z
dc.date.issued2014-08-01
dc.description.abstractThe objective of this manuscript is to study directly the Favard type theorem associated with the three term recurrence formulaRn+1(Z) = [(1 + ic(n+i))z + (1 - ic(n+1))]R-n(z) - 4d(n+1)zR(n-1)(z), n >= 1,with R-0(z) = 1 and R-1(z) = (1 + ic(1))z + (1 - ic(1)), where {c(n)}(n=1)(infinity) is a real sequence and {d(n)}(n=1)(infinity) is a positive chain sequence. We establish that there exists a unique nontrivial probability measure mu on the unit circle for which {R-n(z) - 2(1 - m(n))Rn-1(Z)} gives the sequence of orthogonal polynomials. Here, {m(n)}(n=0)(infinity) is the minimal parameter sequence of the positive chain sequence {d(n)}(n=1)(infinity). The element d(1) of the chain sequence, which does not affect the polynomials R-n, has an influence in the derived probability measure mu and hence, in the associated orthogonal polynomials on the unit circle. To be precise, if {M-n}(n=0)(infinity) is the maximal parameter sequence of the chain sequence, then the measure mu is such that M-0 is the size of its mass at z = 1. An example is also provided to completely illustrate the results obtained.en
dc.description.affiliationUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.affiliationUniv Fed Uberlandia, Fac Matemat, BR-38408100 Uberlandia, MG, Brazil
dc.description.affiliationUniv Fed Triangulo Mineiro, Inst Ciencias Tecnol & Exatas, BR-38064200 Uberaba, MG, Brazil
dc.description.affiliationUnespUniv Estadual Paulista, IBILCE, Dept Matemat Aplicada, BR-15054000 Sao Jose Do Rio Preto, SP, Brazil
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
dc.description.sponsorshipDireccion General de Investigacion, Ministerio de Economia y Competitividad of Spain
dc.description.sponsorshipIdDireccion General de Investigacion, Ministerio de Economia y Competitividad of SpainMTM2012-36732-C03-01
dc.format.extent146-162
dc.identifierhttp://dx.doi.org/10.1016/j.jat.2014.05.007
dc.identifier.citationJournal Of Approximation Theory. San Diego: Academic Press Inc Elsevier Science, v. 184, p. 146-162, 2014.
dc.identifier.doi10.1016/j.jat.2014.05.007
dc.identifier.issn0021-9045
dc.identifier.lattes3587123309745610
dc.identifier.urihttp://hdl.handle.net/11449/112915
dc.identifier.wosWOS:000338399100006
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.ispartofJournal of Approximation Theory
dc.relation.ispartofjcr0.939
dc.relation.ispartofsjr0,907
dc.rights.accessRightsAcesso restrito
dc.sourceWeb of Science
dc.subjectSzegö polynomialsen
dc.subjectKernel polynomialsen
dc.subjectPara-orthogonal polynomialsen
dc.subjectChain sequencesen
dc.subjectContinued fractionsen
dc.titleA Favard type theorem for orthogonal polynomials on the unit circle from a three term recurrence formulaen
dc.typeArtigo
dcterms.licensehttp://www.elsevier.com/about/open-access/open-access-policies/article-posting-policy
dcterms.rightsHolderElsevier B.V.
dspace.entity.typePublication
unesp.author.lattes3587123309745610[3]
unesp.author.orcid0000-0003-4803-8182[1]
unesp.author.orcid0000-0002-5124-8423[3]
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências, Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentMatemática Aplicada - IBILCEpt

Arquivos