Atenção!


O atendimento às questões referentes ao Repositório Institucional será interrompido entre os dias 20 de dezembro de 2025 a 4 de janeiro de 2026.

Pedimos a sua compreensão e aproveitamos para desejar boas festas!

Logo do repositório

Ensembles of center vortices and chains: Insights from a natural lattice framework

Carregando...
Imagem de Miniatura

Orientador

Coorientador

Pós-graduação

Curso de graduação

Título da Revista

ISSN da Revista

Título de Volume

Editor

Tipo

Artigo

Direito de acesso

Resumo

A scenario to understand the asymptotic properties of confinement between quark probes, based on a 4D mixed ensemble of percolating center-vortex world surfaces and chains, was initially proposed by one of us in a non-Abelian setting. More recently, the same physics was reobtained by means of a Schrödinger wave functional peaked at Abelian-projected configurations, which deals with center-vortex lines and pointlike monopoles in real space. In this work, we formulate the Abelian-projected ensemble and reassess the non-Abelian one within the Weingarten lattice representation for the sum over surfaces. In the phase where world surfaces are stabilized by contact interactions and percolate, lattice gauge fields emerge. This generalizes the Goldstone modes in an Abelian loop condensate to the case where non-Abelian degrees of freedom are present. In this language, the different natural matching properties of elementary center-vortex world surfaces and monopole worldlines can be easily characterized. In the lattice, the Abelian setting also implements the original idea that the mixed ensemble reconciles N-ality with the formation of a confining flux tube. In this picture, center vortices and chains explain why Abelian-projected variables capture this property at asymptotic distances while simultaneously allowing for a dual superconductordescription of the fundamental string. Common features, differences in the continuum, and perspectives will also be addressed.

Descrição

Palavras-chave

Idioma

Inglês

Citação

Physical Review D, v. 111, n. 5, 2025.

Itens relacionados

Financiadores

Unidades

Departamentos

Cursos de graduação

Programas de pós-graduação

Outras formas de acesso