Logo do repositório
 

Segmentation methods of H&E-stained histological images of lymphoma: A review

dc.contributor.authorAzevedo Tosta, Thaína A.
dc.contributor.authorNeves, Leandro A. [UNESP]
dc.contributor.authordo Nascimento, Marcelo Z.
dc.contributor.institutionUniversidade Federal de Uberlândia (UFU)
dc.contributor.institutionUniversidade Federal do ABC (UFABC)
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2018-12-11T17:14:46Z
dc.date.available2018-12-11T17:14:46Z
dc.date.issued2017-01-01
dc.description.abstractImage processing techniques are being widely developed for helping specialists in analysis of histological images obtained from biopsies for diagnoses and prognoses determination. Several types of cancer can be diagnosed using segmentation methods that are capable to identify specific neoplastic regions. The use of these computational methods makes the analysis of experts more objective and less time-consuming. Thus, the progressive development of histological images segmentation is an important step for modern medicine. This study presents the progress of recent advances in methods for segmentation of chronic lymphocytic leukemia, follicular lymphoma and mantle cell lymphoma images. The paper shows the main techniques of image processing employed in the stages of preprocessing, detection/segmentation and post-processing of published approaches and discusses their advantages and disadvantages. This study presents the most often used segmentation techniques for these images segmentation, such as thresholding, region-based methods and K-means clustering algorithm. The addressed cancers are also described in histological details as well as possible variations in the tissue preparation and its digitization. Besides, it includes a review of validation techniques and discusses the potential future directions of research in the segmentation of these neoplasias.en
dc.description.affiliationFaculty of Computer Science (FACOM) - Federal University of Uberlândia (UFU), Av. João Naves de Avila, 2121
dc.description.affiliationCenter of Mathematics Computing and Cognition (CMCC) Federal University of ABC (UFABC), Av. dos Estados, 5001
dc.description.affiliationDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), R. Cristóvão Colombo, 2265, São José do Rio Preto
dc.description.affiliationUnespDepartment of Computer Science and Statistics (DCCE) São Paulo State University (UNESP), R. Cristóvão Colombo, 2265, São José do Rio Preto
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
dc.description.sponsorshipFundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG)
dc.description.sponsorshipIdCAPES: 1575210
dc.description.sponsorshipIdFAPEMIG: APQ-02885-15
dc.format.extent35-43
dc.identifierhttp://dx.doi.org/10.1016/j.imu.2017.05.009
dc.identifier.citationInformatics in Medicine Unlocked, v. 9, p. 35-43.
dc.identifier.doi10.1016/j.imu.2017.05.009
dc.identifier.file2-s2.0-85029678031.pdf
dc.identifier.issn2352-9148
dc.identifier.scopus2-s2.0-85029678031
dc.identifier.urihttp://hdl.handle.net/11449/175190
dc.language.isoeng
dc.relation.ispartofInformatics in Medicine Unlocked
dc.relation.ispartofsjr0,224
dc.rights.accessRightsAcesso aberto
dc.sourceScopus
dc.subjectChronic lymphocytic leukemia
dc.subjectFollicular lymphoma
dc.subjectHistological images
dc.subjectMantle cell lymphoma
dc.subjectSegmentation
dc.titleSegmentation methods of H&E-stained histological images of lymphoma: A reviewen
dc.typeResenha
dspace.entity.typePublication
unesp.campusUniversidade Estadual Paulista (UNESP), Instituto de Biociências Letras e Ciências Exatas, São José do Rio Pretopt
unesp.departmentCiências da Computação e Estatística - IBILCEpt

Arquivos

Pacote original

Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
2-s2.0-85029678031.pdf
Tamanho:
2.44 MB
Formato:
Adobe Portable Document Format
Descrição: