Publicação: Effect of recycled polyethylene terephthalate strips on the mechanical properties of cement-treated lateritic sandy soil
dc.contributor.author | Silveira, Maitê Rocha [UNESP] | |
dc.contributor.author | Lodi, Paulo César [UNESP] | |
dc.contributor.author | Correia, Natália de Souza | |
dc.contributor.author | Rodrigues, Roger Augusto [UNESP] | |
dc.contributor.author | Giacheti, Heraldo Luiz [UNESP] | |
dc.contributor.institution | Universidade Estadual Paulista (Unesp) | |
dc.contributor.institution | Universidade Federal de São Carlos (UFSCar) | |
dc.date.accessioned | 2021-06-25T11:07:36Z | |
dc.date.available | 2021-06-25T11:07:36Z | |
dc.date.issued | 2020-12-01 | |
dc.description.abstract | The civil engineering construction industry is nowadays one of the largest consumers of natural resources. Therefore, the proposal of using alternative materials that seek to reduce waste production or the use of previously generated waste is becoming increasingly necessary. This paper evaluated the effect of recycled polyethylene terephthalate (PET) strips on the mechanical properties of a cement-treated lateritic sandy soil. Unconfined compression strength (UCS) tests were conducted in natural and PET strips mixtures in different strips lengths and contents. In addition to UCS tests, compaction tests were also conducted in order to analyze the effect of these inclusions on the properties of a lateritic sandy soil. Lastly, direct shear tests were conducted on natural soil-strip, soil-cement, and soil-cement-strip composites using optimum UCS results. The addition of strips to the soil-cement composite showed an increase in the soil cohesion parameter. The inclusion of strips also provided a more ductile behavior to the soil, presenting greater deformations with fewer stress peaks. Results showed that the recycled strips’ inclusion in soil-cement can provide a material with high strength, ductility, and a highly sustainable alternative. | en |
dc.description.affiliation | Department of Civil and Environmental Engineering São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube 14-01 | |
dc.description.affiliation | Department of Civil Engineering Federal University of Sao Carlos (UFSCar), Rodovia Washington Luiz | |
dc.description.affiliationUnesp | Department of Civil and Environmental Engineering São Paulo State University (UNESP), Av. Engenheiro Luiz Edmundo Carrijo Coube 14-01 | |
dc.format.extent | 1-19 | |
dc.identifier | http://dx.doi.org/10.3390/su12239801 | |
dc.identifier.citation | Sustainability (Switzerland), v. 12, n. 23, p. 1-19, 2020. | |
dc.identifier.doi | 10.3390/su12239801 | |
dc.identifier.issn | 2071-1050 | |
dc.identifier.scopus | 2-s2.0-85096513244 | |
dc.identifier.uri | http://hdl.handle.net/11449/208174 | |
dc.language.iso | eng | |
dc.relation.ispartof | Sustainability (Switzerland) | |
dc.source | Scopus | |
dc.subject | Cement | |
dc.subject | Composite | |
dc.subject | Lateritic soil | |
dc.subject | Recycled pet strips | |
dc.subject | Shear strength | |
dc.subject | Uniaxial tests | |
dc.title | Effect of recycled polyethylene terephthalate strips on the mechanical properties of cement-treated lateritic sandy soil | en |
dc.type | Artigo | |
dspace.entity.type | Publication | |
unesp.department | Engenharia Civil e Ambiental - FEB | pt |