Logotipo do repositório
 

Publicação:
Neural models for predicting hole diameters in drilling processes

dc.contributor.authorCastro Neto, Frederico de [UNESP]
dc.contributor.authorGerônimo, Thiago Matheus [UNESP]
dc.contributor.authorCruz, Carlos Eduardo Dorigatti [UNESP]
dc.contributor.authorAguiar, Paulo Roberto de [UNESP]
dc.contributor.authorBianchi, Eduardo Carlos [UNESP]
dc.contributor.institutionUniversidade Estadual Paulista (Unesp)
dc.date.accessioned2022-04-28T18:58:48Z
dc.date.accessioned2016-03-02T12:56:25Z
dc.date.accessioned2016-03-02T13:02:23Z
dc.date.available2022-04-28T18:58:48Z
dc.date.available2016-03-02T12:56:25Z
dc.date.available2016-03-02T13:02:23Z
dc.date.issued2013
dc.description.abstractThe control of industrial manufacturing processes is of great economic importance due to the ongoing search to reduce raw materials and labor wastage. Indirect manufacturing operations such as dimensional quality control generate indirect costs that can be avoided or reduced through the use of control systems. The use of intelligent manufacturing systems, which is the next step in the monitoring of manufacturing processes, has been researched through the application of artificial neural networks in the last two decades. In this work, artificial intelligence systems were trained to estimate the diameter of holes in precision drilling processes. The methodology involved the use of an acoustic emission sensor, a three-dimensional dynamometer, an accelerometer, and a Hall effect sensor to monitor the drilling process. The method was applied to test specimens composed of packages of Ti6Al4V titanium alloy and 2024-T3 aluminum alloy sheets, which are widely employed in the aerospace industry. The collected signals were processed and the data were organized and fed into artificial intelligence systems, which consisted of an artificial multilayer perceptron (MLP) neural network and the adaptive neuro-fuzzy inference system (ANFIS). The results indicated that the MLP network was the most efficient of the two artificial intelligence techniques. The results also demonstrated a strong potential for the industrial application of the models.en
dc.description.affiliationUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Faculdade de Engenharia de Bauru (FEB), Departamento de Engenharia Elétrica, Bauru, SP, Brasil
dc.description.affiliationUnespUniversidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Faculdade de Engenharia de Bauru (FEB), Departamento de Engenharia Elétrica, Bauru, SP, Brasil
dc.description.sponsorshipConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
dc.description.sponsorshipCoordenação de Aperfeiçoamento de Pessoal e Nível Superior (CAPES)
dc.format.extent49-54
dc.identifierhttp://dx.doi.org/10.1016/j.procir.2013.09.010
dc.identifier.citationProcedia CIRP, v. 12, p. 49-54, 2013.
dc.identifier.doi10.1016/j.procir.2013.09.010
dc.identifier.issn2212-8271
dc.identifier.lattes1455400309660081
dc.identifier.lattes1318233288116917
dc.identifier.lattes1460001372956013
dc.identifier.lattes1099152007574921
dc.identifier.orcid0000-0002-9934-4465
dc.identifier.scopus2-s2.0-84886784851
dc.identifier.urihttp://hdl.handle.net/11449/243676
dc.language.isoeng
dc.publisherElsevier B. V.
dc.relation.ispartofProcedia CIRP
dc.relation.ispartofsjr0,668
dc.rights.accessRightsAcesso restrito
dc.sourceCurrículo Lattes
dc.sourceScopus
dc.subjectDrillingen
dc.subjectNeural networksen
dc.subjectANFISen
dc.titleNeural models for predicting hole diameters in drilling processesen
dc.typeArtigopt
dcterms.rightsHolderElsevier B. V.
dspace.entity.typePublication
unesp.author.lattes1455400309660081[4]
unesp.author.lattes1318233288116917
unesp.author.lattes1460001372956013
unesp.author.lattes1099152007574921[5]
unesp.author.orcid0000-0002-9934-4465[4]
unesp.author.orcid0000-0003-2675-4276[5]
unesp.campusUniversidade Estadual Paulista (UNESP), Faculdade de Engenharia, Baurupt
unesp.departmentEngenharia Elétrica - FEBpt

Arquivos