Mathematical models of generalized diffusion
Carregando...
Data
Orientador
Coorientador
Pós-graduação
Curso de graduação
Título da Revista
ISSN da Revista
Título de Volume
Editor
Royal Swedish Acad Sciences
Tipo
Artigo
Direito de acesso
Acesso restrito
Resumo
We discuss in this paper equations describing processes involving non-linear and higher-order diffusion. We focus on a particular case (u(t) = 2 lambda (2)(uu(x))(x) + lambda (2)u(xxxx)), which is put into analogy with the KdV equation. A balance of nonlinearity and higher-order diffusion enables the existence of self-similar solutions, describing diffusive shocks. These shocks are continuous solutions with a discontinuous higher-order derivative at the shock front. We argue that they play a role analogous to the soliton solutions in the dispersive case. We also discuss several physical instances where such equations are relevant.
Descrição
Palavras-chave
Idioma
Inglês
Citação
Physica Scripta. Stockholm: Royal Swedish Acad Sciences, v. 63, n. 5, p. 353-356, 2001.